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Abstract

Leveraged ETFs (LETFs) have recently been criticized for not performing as ‘advertised’ and
therefore have been deemed as unsuitable for unsophisticated or buy-and-hold investors. In response
to this criticism, recent research has shown that the empirical performance of any given LETF is
indeed consistent with the stated goal of replicating some multiple of the daily performance of
the underlying security. In this note we make the obvious connection between LETFs and the
classic constant proportion trading strategies that have long been studied in the dynamic portfolio
optimization literature. While this connection is obvious it does not appear to have been fully
utilized in explaining LETF performance. A possible explanation is that the terminal wealth that
results from following a constant proportion trading strategy is rarely, if ever, expressed as a function
of the terminal values of the underlying assets. Indeed until very recently no such expression has
been available in the literature. In this paper we (re)derive such an expression for general diffusion
dynamics and multiple underlying securities and use it to explain LEFT performance. In particular
we explain why an investor with a long position in an LETF is short realized variance. We also
interpret the exposure of a non-leveraged constant-proportion strategy to realized variance as a
multiplicative premium. This premium compensates an investor for accepting a terminal wealth
that is proportional to the generalized geometric mean of the underlying security prices rather
than the corresponding arithmetic mean that would be earned by a buy-and-hold investor. We also
propose a class of ETFs, Constant Proportion ETFs (CPETFSs), that should be more suitable for
buy-and-hold investors. Moreover, because these CPETFs would sell high and buy low they should
help to dampen market volatility at the close, a property not shared by LETFs.
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1 Introduction

A constant proportion (CP) trading strategy! is a strategy in which the fraction of wealth invested
in each risky asset is constant and does not vary with time. Such a strategy requires constant
rebalancing and is therefore dynamic. CP strategies are perhaps the most well-known of all dynamic
trading strategies. They appear as the optimal solution to the classic dynamic portfolio choice
problem in which the investment opportunity set does not vary with time and the investor has
constant relative risk aversion, i.e. a power or logarithmic utility function over terminal wealth and
/ or intermediate consumption. These problems were first studied and solved by Merton (1969,
1971), Samuelson (1969) and Hakansson (1970). Moreover, the optimality of these strategies is
derived in just about every advanced? financial economics textbook that discusses dynamic portfolio
optimization. Browne (1998) studies the rate of return on investment for CP strategies when the
underlying securities follow geometric Brownian motions and lists several other problems for which
CP strategies are optimal. They include, for example, the problem of minimizing the expected time
to reach a given level of wealth and the problem of maximizing the expected discounted reward
for reaching a given level of wealth. CP strategies, of course, are also synonymous® with the Kelly
Criterion (Kelly 1956) for optimizing the long-term growth-rate of wealth.

It is remarkable, however, that despite the ubiquity of CP strategies, until very recently we could
not find an expression in the literature for the terminal wealth of a CP trading strategy in terms
of the terminal security prices. In this note we use the expression? for the terminal wealth of a CP
strategy that was recently derived by Haugh and Jain (2007) to explain the recent and controversial
performance of LETFs. Unlike regular ETFs which are passively managed, LETFs require active
management. They have the stated goal of replicating some multiple of the daily performance of
some underlying security or index. This multiple is greater than one for a positively leveraged ETF
and less than zero for an inverse ETF. Typical leverage values are +2 and £3. Many investors
who invested in these securities expected returns that would be very similar to the returns of a
buy-and-hold investment in the same underlying security at the same leverage multiple. During
the highly volatile period of the 2008 credit crisis this was not the case and so LETFs received
much attention and criticism from the financial press.

We are certainly not the first to explain LETF performance. Indeed Avellaneda and Zhang (2010)
and Cheng and Madhavan (2009) both® derived (9) by arguing from first principles. In this paper,
we obtain (9) as a particular case of the more general expression derived by Haugh and Jain (2007).
We also argue that given an understanding of CP trading strategies, there should have been no
surprise whatsoever when LETF's performed as they did during the financial crisis of 2008. Indeed
the sensitivity of the performance of a CP trading strategy to realized variance does not appear
to be widely known or at the very least, widely appreciated. This is remarkable given the central
role they played in the early development of dynamic portfolio optimization and their association
with the Kelly Criterion. This lack of appreciation is most likely explained by the fact that just
about every treatment of CP strategies in the literature neglects to write the terminal wealth as

!These strategies are often referred to as static strategies in the literature but we will persist with referring to

them as CP strategies in this paper.
*For example, see Duffie (2004), Merton (1990) or Cvitanic and Zapatero (2004). See also Karatzas and Shreve

(1997) for a more recent treatment of the optimality of constant proportion trading strategies.
3See also, for example, Breiman (1961), Thorp (1971), Ethier and Tavare (1983), Ethier (1988), Cover (1991) and

Cover and Thomas (1991) for related work.
4Haugh and Jain (2007) derived this an expression when security prices have general diffusion dynamics. To the

best of their knowledge they were the first to derive this expression despite it being particularly simple to derive.
®Cheng and Madhavan (2009) derived (9) assuming geometric Brownian motion dynamics.
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a function of the terminal values of the underlying securities. Instead these treatments often end
once they have demonstrated the optimality of a CP strategy and on some occasions, derived the
optimal value function.

In this note we write the terminal wealth of a CP trading strategy as a function of the terminal
security prices and see that it immediately explains LETF performance. Moreover, we can also use
this expression to interpret the exposure of a CP strategy to realized variances and covariances as
the cost or compensation for following a CP strategy as opposed to a buy-and-hold strategy. We
also propose a constant proportion ETF (CPETF) and argue that such a security would be more
appealing to unsophisticated investors as well as having some positive systemic effects on market
microstructure. In particular, the rebalancing requirements of a CPETF would require the manager
to sell at the close after an up-day and to buy at the close after a down-day, thereby dampening
volatility at the close.

2 Security Price and Wealth Dynamics

We assume there are n risky assets and a single risk-free asset available in the economy. The time
t vector of risky asset prices is denoted by P, = (Pt(l) Pt(n))T and the time ¢ instantaneously
risk-free rate of return is denoted by ;. We assume the price dynamics of the risk assets satisfy

ar,

= Ut dt + Zt dBt (1)
By

where dP;/P; should be interpreted component-wise, By is an m-dimensional standard Brownian
motion, u; is an n-dimensional adapted process and ¥; is an n x m adapted matrix process. It is
worth mentioning that our result, i.e. Proposition 1, is no longer valid if we allow jumps in the
security prices. Nonetheless, it is straightforward to show that the proposition would would hold
approximately® in the presence of jumps.

Consider now an investor who chooses to follow a CP trading strategy, & = (6, ... 6,)", so that
at any time ¢, the fraction of wealth invested in the ¥ risky asset is constant and equal to 6;. The
fraction invested in the cash-account is then given by 1 — > , ;. The value of the portfolio, W,
then has the following dynamics

dW;
—L = (1= 0T1)r + 6T | dt + 6754dB;. (2)

Wi
Haugh and Jain (2007) recently found an expression for Wy in terms of Pr when the price dynamics
are given by (1). While this expression is trivial to derive (see Proposition 1 below) it has many
applications. In particular, we will use it in Section 3 to explain the performance of leveraged
ETFs.

5Consider for example a jump-diffusion model for the " security. Then P}i) would have an additional factor of the

form HO<t<T(1+Jt<i)) where Jtm is the relative jump in the price of the i*" security at time ¢. The corresponding term
< _ N

in the expression for the terminal wealth of the CP strategy would be [],_,.,(1 + 0,J) ~ (HO<t§T(1 + Jt(’))) .

This later approximation then immediately leads to (3) with the quality of the approximation depending on the
actual jump sizes. Given how accurate (3) is in practice (see Figure 2) even in times of extreme market volatility, it

is clear we lose very little by working with diffusions.



2.1 The Terminal Wealth of a Constant Proportion Trading Strategy

We have the following proposition” which solves for the terminal wealth corresponding to any CP
trading strategy when the price dynamics satisfy (1). This result was originally obtained® by Haugh
and Jain (2007) who used it to study the dual approach for portfolio evaluation that was proposed
by Haugh, Kogan and Wang (2006).

Proposition 1 Suppose price dynamics satisfy (1) and that a static trading strategy is employed
s0 that at each time t € [0,T] a proportion, 0;, of time t wealth is invested in the it risky security
fori=1,...,n with1—0" 1 invested in the risk-free asset. Then the terminal wealth, Wr, resulting
from this strategy satisfies

T 1 n o f pl)\ Y
Wr = Wy exp < / [(1 — 0T D+ 567 (diag(ztzj ) — 23] 0)] dt) 1% (3)
0 i=1 PO

Proof: Using (1) and applying Itd’s lemma to In Py we obtain
T 1 T
InPr = InPFy +/ <,ut — 5 dlag(ZtEtT)>dt +/ > dBy. (4)
0 0
As the wealth dynamics satisfy (2) another simple application of It6’s lemma to In Wy then implies
T T
1
Wr = Woexp </ [(1 —0 ")+ 0Ty — 29@239] dt + 9T/ M dBt>. (5)
0 0

Substituting (4) into (5) we then obtain (3) as desired. [

Before discussing the relevance of Proposition 1 to LETFs in Section 3, we will briefly discuss some
other applications of the proposition.

Merton’s Problem

Consider the classic dynamic portfolio optimization problem that was originally considered by
Merton (1969). The drift vector, volatility matrix and interest rate are now all assumed to be
constant. For an investor with a constant relative risk aversion the optimal solution is to adopt a
CP strategy. In this case (3) reduces to

n @0\ %
P
Wr = Wo exp <(1 0TI T 4+ 247 (diag(EET) - zzTe) T) IT(= (6)
2 Pl PO(z)

Despite all the attention that has been paid to this problem in the literature, we have only see the
expression for Wy in (6) in the recent paper of Haugh and Jain (2007).
Studying Return Predictability

The CP strategy is often used as a base case when studying the value of predictability in security
prices. Predictability is often® induced by setting ¥; = X, a constant, and allowing the drift

"This result is so simple to derive that it hardly deserves “proposition” status. Nonetheless, in the absence of any
other propositions in this note we will persist with it.
8To be precise, Haugh and Jain (2007) assumed that the volatility matrix in (1) was constant but it was clear

that their derivation also worked for a stochastic volatility matrix.
9See, for example, Lynch (2001).



term, (i, to be a function of some state vector process, X; say. In that case the expression in (6)
still applies and terminal wealth is a function of only the terminal security prices. Moreover, the
expected utility of any CP strategy can often be determined in closed form when the distribution of
Py is also known. For example, if log(P;) is a (vector) Gaussian process, then Wy is log-normally
distributed and

Vii= B[ /(1 —9)] (7)

can be computed analytically. Using (7) it is also possible to compute the optimal CP strategy and
compare!? it to the CP strategy that an investor would employ if he ignored the predictability of
returns and assumed a constant investment opportunity set.

Equations (6) and (7) can also be used to determine the myopic strategy where at each time ¢, the
investor solves his portfolio optimization problem by assuming that the instantaneous moments of
asset returns are fixed at their current values for the remainder of the investment horizon. The
myopic strategy ignores the hedging component of the optimal trading strategy and has also been
studied extensively!! in the literature.

The Dual Approach to Portfolio Evaluation

Haugh and Jain (2007) used the preceding observations to compute duality-based upper bounds on
the value function of the optimal dynamic trading strategy when return predictability was induced
via the drift process, ;. In addition to improving the efficiency of their numerical algorithms, the
closed form expression for the value function in (7) allowed them to construct (in the case of CP
strategies) upper bounds on the optimal value function that were superior and theoretically more
satisfying than those calculated originally by Haugh, Kogan and Wang (2006).

It is clear then that Proposition 1, while simple, has many potential applications. The final ap-
plication that we will discuss relates to leveraged ETFs and the controversy surrounding their
performance during the credit crisis of 2008.

3 Leveraged ETFs

A leveraged ETF has just a single underlying security or index and promises to track 6 times the
daily performance of this underlying index. This performance is usually achieved through the use
of total return swaps. As in Avellaneda and Zhang (2010), we can approximate the value of the
LETF with the following stochastic differential equation

dLy dP;

— = 00— 1 —0)rdt — fdt 8

= 05+ (—oydt— ®
where L; is the time ¢ value of the LETF and f is the constant expense ratio of the LETF. The
(1—0)rdt term in (8) reflects the cost of funding the leveraged position (when 6 > 1) or the risk-free

10The static strategy obtained from maximizing (7) is the CP strategy that an investor would employ if he was
forced to select a CP strategy and knew the true price dynamics. In contrast, an investor who was ignorant of the
true price dynamics and believed the investment opportunity set was not time-varying would willingly select a CP

strategy. However, the two CP strategies would not coincide.
See, for example, Kroner and Sultan (1993), Lioui and Poncet (2000), Brooks et al. (2002) and Basak and

Chabakauri (2008).



income from an inverse ETF (when 6 < 0). Avellaneda and Zhang (2010) and (in the case where
P, follows a geometric Brownian motion) Cheng and Madhavan (2009) solved (8) to obtain

iz - (g)e exp ((1—0)rT — T + %9(1—9) /OTU?dt> (9)

and used this expression to explain the empirical performance of LETFs.

The principal motivation for this note is to argue that this performance should have been anticipated
in the market given the ubiquity of CP trading strategies in the literature. Indeed if we ignore the
expense ratio then it is clear from (8) that the dynamics of L; are simply those of a CP trading
strategy and indeed (3) reduces to (9) in the single risky asset case where we now write oy for
Y. The expense ratio, being deterministic, simply results in the time 7" value of the LETF being
reduced by a factor of exp(—fT).

It is worthwhile contrasting (9) with the time T value of a static position of 6 times the underlying
index that was initiated at time ¢ = 0. If we denote the time T value of such a position by Sr,

then it is clear that
St 0Pr—(0—1)exp(rT)Fy

So PRy
Many of the original investors in LETFs believed that their returns would resemble the returns in
(10) once they had adjusted for the expense ratio, f. And while they would have been justified in
this belief in times of low volatility and short investment horizons, the difference between (9) and
(10) can be quite remarkable when realized volatility is high.

(10)

Consider, for example Figure 1(a) where we have plotted the performance of the ProShares Ultra
Financial ETF (ticker UYG) against a static position of 2 x the I-Shares Financial Sector ETF
(ticker TYF) between August 20082 and August 2009. The ProShares ETF is a leveraged ETF
that is designed to track two times the daily performance of the Dow Jones Financial Index (DJFT)
while the I-Shares ETF is designed to simply track the DJFI. The discrepancy between the two
performances is dramatic and is explained by the very high level of realized variance in that period.
Note that an investor in a leveraged ETF with 6 = 2 is short realized variance as suggested by (9).

Similarly in Figure 1(b) we have plotted the performance of the ProShares Ultra Short Financial
ETF (ticker SKF) against a static position of —2 x the I-Shares Financial Sector ETF, again
between August 2008 and August 2009. Note that the ProShares Ultra Short Financial ETF is a
leveraged ETF that is designed to track minus two times the daily performance of the DJFI. The
discrepancy between the two is again dramatic and is of course explained by the very high level of
realized variance in that period. Note that an investor in a leveraged ETF with § = —2 is once
again short realized variance.

In fact any value of § < 0 or 6 > 1 results in a negative exposure to realized variance for a fixed
value of the terminal price of the underlying index, Pp. Moreover the effect is asymmetric in that
an LETF with a leverage of > 1 is not as short variance as an inverse!®> ETF with a leverage of —6.
This short position in realized variance is best explained by noting that for values of 6 ¢ [0, 1] the
act of daily rebalancing will require the manager of the LETF to “sell low” and “buy high”. The
greater the realized variance, the greater the magnitude of rebalancing and so the greater the losses
on the LETF. Thus the daily rebalancing is similar to delta-hedging a short position in a vanilla
European option where one is also short realized variance. In contrast, an ETF corresponding to a

12YWe assume both positions were entered into at the end of July 2008.
13We include inverse ETFs as a subset of LETFs in this note.
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Figure 1: Performance of LETFs Versus Leveraged Buy-and-Hold Positions in Underlying Index

value of # € (0, 1) is long realized variance and benefits from high levels of realized variance, again
conditional on Pr. We will return to this issue again in Section 5.

Our discussion of the performance of leveraged ETFs has implicitly assumed that their returns
are well approximated by (9). As demonstrated by Avellaneda and Zhang (2010) this is indeed
the case, even when markets are highly volatile. They analyze the tracking error when the actual
performance of LETFs is approximated by (9) and conclude that even in very volatile markets,
the error is small. For example, in Figure 2(a) we graph the performance of the ProShares Ultra
Financial LETF (6 = 2) against the performance implied by (9). We assumed'? in the latter case
that r = f = 1%. Note that that the two graphs are in extremely close agreement with one another
despite the very high levels of realized volatility during that period.

Similarly in Figure 2(b) we graph the performance of the ProShares Ultra Short Financial LETF
(0 = —2) against the performance implied by (9). We again assumed in the latter case that
r = f = 1%. While the two graphs are very similar there is nonetheless a clear discrepancy
between the two which Avellaneda and Zhang put down to the difficulty in shorting financial
stocks during this period. Of the 56 LETF's considered by Avellaneda and Zhang, this was atypical
and the tracking error was generally closer to that of Figure 2(a).

Before concluding this section, it is worth mentioning the effects!® that the presence of LETFs
can have on market microstructure. Because LETFs need to buy at the close when the market
is up and sell at the close when the market is down, they have been blamed'¢ for increasing
volatility at the close. Furthermore, because the direction of the daily rebalancing trades are
widely known in the market, it is suspected that many proprietary trading desks have regularly
front-run these trades. They are therefore suspected of adding to market volatility at the close as
well as negatively impacting LETF performance. Cheng and Madhavan (2009) provide an account
of these microstructure effects and estimate the aggregate daily hedging demand of LETFs in the
market.

“Over this period the 1-month risk free rate moved from approximately 1.6% to .1% but we find using a constant
rate of 1% makes no discernable difference to the results.

15Variance-swaps are somewhat similar in that their hedging also requires daily rebalancing at the close.

16See, for example, Lauricella, Pulliam and Gullapalli (2008).
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Figure 2: Actual Performance of Leveraged ETFs Versus Performance Predicted by (9)

4 The CP Strategy Versus the Buy-and-Hold Portfolio

We will now refer to the risk-free asset as the 0% security and use 6y to denote the fraction of
wealth invested in this security. Unless otherwise stated we will assume that 0 < 6; < 1 for each
i =0,...,n and that ) ;0; = 1. Consider now a buy-and-hold strategy where at time ¢ = 0
we invest a constant proportion, 6;, of our time ¢ = 0 wealth in the i** security for i = 0,...,n.
Assuming we started with an initial wealth of Wj, then the gross return at date T is given by

W, n pl)
P
—= = > oL (11)

Similarly we can rewrite!” (3) as

Wr (Lo /T<dia (ZexeTy — E“Z“Te)dt f[ } (12)
Wo p 5 g2 2y 11

0
1 T S 2 T
= exp| = E Oiof; — Var(0' Ry) | dt (13)
2 Jo \“ ’
1=0
where Xf is the instantaneous variance-covariance matrix of the n+1 securities, R; = (R(O) ce Rtn))

is the time ¢ vector of their instantaneous'® returns and 0152,1' = Var(Rii)). It is particularly inter-
esting now to compare (11) and (13). In fact we can apply the general arithmetic-geometric mean

inequality to conclude that

P(z n o/ pl)\ Y
Ze > 11)( %) . (14)

Fo

"Note that we now use 0 to denote (bo, ..., Gn)T.

8 That is, RE“ = dPt@/Pt(i). Note also that the first row and first column of Xf contains only zeros and the

sub-matrix beginning at the (2,2)*" element is identical to .



It is also straightforward to show that

n n n 2
Zﬂlagz - Var(@TRt) Z ZQ’JZZ - (Z 910'@1) Z 0 (15)
=0 =0 =0

for all ¢ and so it follows that the exponential term in (13) is always greater than or equal to 1.

Compensation for Earning the Geometric Mean

We can therefore interpret the exponential term in (13) as the (multiplicative) compensation that
an investor receives for accepting the geometric mean of a CP strategy instead of the arithmetic
mean of the corresponding buy-and-hold strategy. This compensation is similar to holding a regular
option in that the CP strategy is long gamma: it therefore profits from the act of rebalancing by
selling high and buying low.

Moreover an investor in a CP trading strategy benefits from knowing that the geometric mean
of the underlying security returns will constitute a lower bound on his overall portfolio return.
The degree to which the realized return outperforms this lower bound will depend on the realized
variances and covariances of the securities. This long volatility feature of CP strategies has been
(at least informally) identified by others. For example, Luenberger (1997) demonstrates how an
investor can benefit from volatility by rebalancing his portfolio in each period and he refers to this
phenomenon as volatility pumping. More generally, the large literature on the Kelly Criterion'”
and proportional betting has long been aware of this fact. But as stated earlier, the expression
in (12) does not seem to be widely known and though it is simple to derive, the link between the

geometric and arithmetic means also seems to be new.

While these observations apply whenever 0 < 6; < 1and )" ,6; = 1, they can also apply for certain
¢ vectors that do not satisfy these constraints. For example, suppose ¥; = X is a constant matrix
and that we maximize the exponential term in (13) over (,...,0,). Setting 0? := Var(REz)), it is
again straightforward to see that

6" = % (22T)_1 03 - o2

is the maximizing vector corresponding to the n risky securities with 1 — 3" ; 67 denoting the pro-
portion invested in the risk-free security. With this strategy it is easy to check that the exponential

term in (13) reduces to

exp <Z; [0 - 2] (EZT>71 [0F ... 02]T> > 1. (16)

The left-hand-side of (16) is greater than or equal to 1 as the inverse of a positive-definite covariance
matrix is also positive-definite. Note however, that there is no reason why some components of 6*
cannot be negative or exceed 1. As a result, it is possible that the CP strategy with the greatest, i.e.
most positive, exposure to realized variances and covariances requires short selling and leveraged
positions in the underlying securities. This is perhaps surprising given the results on LETFs when
there is only one risky security, i.e. when n = 1. In this n = 1 case the general arithmetic-geometric
mean inequality no longer applies and now the expression in (13) is the (multiplicative) premium
that you must pay for following the CP strategy, i.e. for purchasing the LETF.

19Gee for example the references listed in Section 1.



5 A Constant Proportion ETF?

Given the inability of most investors to time the market, constant proportion trading strategies
should, at least in the absence of market frictions, be reasonably close to optimal for investors
with power or logarithmic utility. The costs?” associated with daily rebalancing, however, would be
prohibitively expensive and time-consuming for individual investors. It might be possible, however,
for an actively managed ETF to employ such a strategy. It would be similar to a regular LETF only
instead of one underlying risky security, there could be n underlying risky securities. For example,
an investor wishing to invest in global equity markets might be interested in an ETF that tracks
the daily returns of the S&P 500, the Eurostoxx 50 and the Nikkei 225. In this case we would have
n = 3. Moreover, if 0 < 6; for i = 1,2,3 and Zle 0; < 1, then we know such a product would have
a long exposure to market volatility, in contrast to LETFs. Such a product, a constant proportion
ETF (CPETF) say, could be suitable for unsophisticated investors.

In addition, the manager of a CPETF would necessarily sell at the close after an up-day and
buy at the close after a down-day and would therefore tend to dampen market volatility at the
close. If rebalancing costs were too expensive, then the CPETF cold be allowed to rebalance less
frequently, say once a week or once a month. Or alternatively, it might be required to be balanced
at the close only one day a month. This would make it difficult for proprietary trading desks
to front-run the CPETF manager. Of course, such a CPETF would only be permitted as long
as it satisfied the transparency requirements imposed by various regulatory agencies. While less
frequent rebalancings would render (12) a less useful approximation, the insights from (12) should
still apply.

6 Conclusions

In this note we utilized the connection between LETFs and constant proportion trading strategies
to explain the recent performance of leveraged ETFs . We did this by (re)deriving an expression
for the terminal wealth of a CP strategy in terms of the terminal values of the underlying securities
under general diffusion dynamics. We explained why an investor with a long position in an LETF
is short realized variance and we also interpreted the exposure of a non-leveraged CP strategy to
realized variance as a multiplicative premium. This premium compensates an investor for accepting
a terminal wealth that is proportional to the generalized geometric mean of the underlying security
prices rather than the corresponding arithmetic mean that would be earned by a buy-and-hold
investor. We also proposed the class of constant proportion ETFs, a class that should be more
suitable for buy-and-hold investors. Moreover, because these ETFs would sell high and buy low
they should help to dampen market volatility at the close, a property not shared by LETFs.
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