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Introduction and motivation

1.1 Preamble

Evolutionary computations, also called evolutionary algorithms, consist of
several heuristics, which are able to solve optimization tasks by imitating
some aspects of natural evolution. They may use different levels of abstrac-
tion, but they are always working on populations of possible solutions for a
given task. The basic idea is that if only those individuals of a population
which meet a certain selection criteria reproduce, while the remaining indi-
viduals die, the population will converge to those individuals that best meet
the selection criteria. If imperfect reproduction is added the population can
begin to explore the search space and will move to individuals that have an
increased selection probability and that hand down this property to their
descendants. These population dynamics follow the basic rule of the Dar-
winian evolution theory, which can be described in short as the “survival of
the fittest”.

Although evolutionary computations belong to a relative new research area,
from a computational perspective they have already showed some promising
features such as:

e evolutionary methods reveal a remarkable balance between efficiency
and efficacy;

e evolutionary computations are well suited for parameter optimisation;

e this type of algorithms allows a wide variety of extensions and con-
straints that cannot be provided in traditional methods;

e evolutionary methods are easily combined with other optimization
techniques and can also be extended to multi-objective optimization.

9




CAPITOLO 1. INTRODUCTION AND MOTIVATION

From an economic perspective, these methods appear to be particularly well
suited for a wide range of possible financial applications, in particular in this
thesis I study evolutionary algorithms

e for time series prediction;

e to generate trading rules;

e for portfolio selection.

1.2 Motivations

It is believed that asset prices are not random, but are permeated by a “melt-
ing pot” of interrelated effects. These interrelationships may result in assets
mispricing, giving rise to potentially profitable opportunities. However, it is
rarely possible to detect them through simple approaches, such as dividend
discount models or even capital asset pricing theories. Rather, they require
models that are able to capture the market complexities. To this end, in
the last decades, researchers have employed intensive econometric and sta-
tistical modeling, that examine the effects of a multitude of variables, such
as price-earnings ratios, dividend yields, interest rate spreads and changes
in foreign exchange rates, on a broad and variegated range of stocks at the
same time. However, this computationally intensive approach often evolves
into a “black box” that spits out answers of which no one knows the ques-
tions. In fact, these models result in complex functional forms difficult to
manage or interpret and, in the worst case, are solely able to fit a given time
series but are useless to predict it. Parallelly to quantitative approaches,
other researchers have focused on the impact of investor psychology (in par-
ticular, herding and overreaction) and on the consequences of considering
informed signals from management and analysts, such as share repurchases
and analyst recommendations. These theories are guided by intuition and
experience, and thus are difficult to be translated into a mathematical en-
vironment.

Hence, the necessity to combine together these point of views in order to
develop models that examine simultaneously hundreds of variables, includ-
ing qualitative informations, and that have user friendly representations, is
urged. To this end, the thesis focuses on the study of methodologies that
satisfy these requirements by integrating economic insights, derived from
academic and professional knowledge, and evolutionary computations.

10




1.3. CONTRIBUTIONS OF THE THESIS

1.3 Contributions of the thesis

The main task of this work is to provide efficient algorithms based on the
evolutionary paradigm of biological systems in order to compute optimal
trading strategies for various profit objectives under economic and statistical
constraints. The motivations for constructing such optimal strategies are:

i) the necessity to overcome data-snooping and supervisorship bias in
order to learn to predict good trading opportunities by using market
and/or technical indicators as features on which to base the forecast-
ing;

ii) the feasibility of using these rules as benchmark for real trading sys-
tems;

iii) the capability of ranking quantitatively various markets with respect to
their profitability according to a given criterion, thus making possible
portfolio allocations.

More precisely, 1 present two algorithms that use artificial expert trading
systems to predict financial time series, and a procedure to generate inte-
grated neutral strategies for active portfolio management.

The first algorithm is an automated procedure that simultaneously selects
variables and detect outliers in a dynamic linear model using information
criteria as objective functions and diagnostic tests as constraints for the
distributional properties of errors. The novelties are the automatic imple-
mentation of econometric conditions in the model selection step, making
possible a better exploration of the solution space on one hand, and the use
of evolutionary computations to efficiently generate a reduction procedure
from a very large number of independent variables on the other hand.

In the second algorithm, the novelty is given by the definition of evolutionary
learning in financial terms and its use in a multi-objective genetic algorithm
in order to generate technical trading systems.

The last tool is based on a trading strategy on six assets, where future
movements of each variable are obtained by an evolutionary procedure that
integrates various types of financial variables. The contribution is given
by the introduction of a genetic algorithm to optimize trading signals pa-
rameters and the way in which different informations are represented and
collected.

11
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1.4 Structure of the thesis

The rest of the thesis is organized into three parts. The first part, titled
Background, collects Chapters 2 and 3. Its purpose is to provide an introduc-
tion to search/optimization evolutionary techniques on one hand, and to the
theories that relate the predictability in financial markets with the concept
of efficiency proposed over time by scholars on the other hand. More precise-
ly, Chapter 2 introduces the basic concepts and major areas of evolutionary
computation. It presents a brief history of three major types of evolutionary
algorithms, i.e. evolution strategies, evolutionary programming and genetic
algorithms, and points out similarities and differences among them. More-
over it gives an overview of genetic algorithms and describes classical and
genetic multi-objective optimization techniques. Chapter 3 first presents an
overview of the literature on the predictability of financial time series. In
particular, the extent to which the efficiency paradigm is affected by the in-
troduction of new theories, such as behavioral finance, is described in order
to justify the market forecasting methodologies developed by practitioners
and academics in the last decades. Then, a description of the econometric
and financial techniques that will be used in conjunction with evolutionary
algorithms in the next chapters is provided. Special attention is paid to
economic implications, in order to highlight merits and shortcomings from
a practitioner perspective.

The second part of the thesis, titled Trading Systems, is devoted to the de-
scription of two procedures I have developed in order to generate artificial
trading strategies on the basis of evolutionary algorithms, and it groups
Chapters 4 and 5. In particular, chapter 4 presents a genetic algorithm for
variable selection by minimizing the error in a multiple regression model.
Measures of errors such as ME, RMSE, MAE, Theil’s inequality coefficient
and CDC are analyzed choosing models based on AIC, BIC, ICOMP and
similar criteria. Two components of penalty functions are taken in analysis-
level of significance and Durbin Watson statistics. Asymptotic properties of
functions are tested on several financial variables including stocks, bonds,
returns, composite prices indices from the US and the EU economies. Vari-
ables with outliers that distort the efficiency and consistency of estimators
are removed to solve masking and smearing problems that they may cause in
estimations. Two examples complete the chapter. In both cases, models are
designed to produce short-term forecasts for the excess returns of the MSCI
Furope Energy sector on the MSCI Europe index and a recursive estimation-
window is used to shed light on their predictability performances. In the first
application the data-set is obtained by a reduction procedure from a very
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large number of leading macro indicators and financial variables stacked
at various lags, while in the second the complete set of 1-month lagged
variables is considered. Results show a promising capability to predict ex-
cess sector returns through the selection, using the proposed methodology,
of most valuable predictors. In Chapter 5 the paradigm of evolutionary
learning is defined and applied in the context of technical trading rules for
stock timing. A new genetic algorithm is developed by integrating statistical
learning methods and bootstrap to a multi-objective non dominated sorting
algorithm with variable string length, making possible to evaluate statistical
and economic criteria at the same time. Subsequently, the chapter discusses
a practical case, represented by a simple trading strategy where total funds
are invested in either the S&P 500 Composite Index or in 3-month Treasury
Bills. In this application, the most informative technical indicators are se-
lected from a set of almost 5000 signals by the algorithm. Successively, these
signals are combined into a unique trading signal by a learning method. I
test the expert weighting solution obtained by the plurality voting commit-
tee, the Bayesian model averaging and Boosting procedures with data from
the the S&P 500 Composite Index, in three market phases, up-trend, down-
trend and sideways-movements, covering the period 2000-2006.

In the third part, titled Portfolio Selection, I explain how portfolio optimiza-
tion models may be constructed on the basis of evolutionary algorithms and
on the signals produced by artificial trading systems. First, market neutral
strategies from an economic point of view are introduced, highlighting their
risks and benefits and focusing on their quantitative formulation. Then, a
description of the GA-Integrated Neutral tool, a MATLAB set of functions
based on genetic algorithms for active portfolio management, is given. The
algorithm specializes in the parameter optimization of trading signals for
an integrated market neutral strategy. The chapter concludes showing an
application of the tool as a support to decisions in the Absolute Return
Interest Rate Strategies sub-fund of Generali Investments.

13
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A gentle introduction to evolutionary
computation

This chapter introduces the basic concepts and major areas of evolutionary
computation. It presents a brief history of three major types of evolutionary
algorithms, i.e. evolution strategies, evolutionary programming and genetic
algorithms, and points out similarities and differences among them. More-
over it gives an overview of genetic algorithms and describes classical and
genetic multi-objective optimization techniques.

2.1 Introduction

Operations research (OR) and management science (MS) are disciplines
that attempt to aid managerial decision making by developing mathematical
models that describe the essence of a problem and then by applying math-
ematical procedures to solve these models. In recent years evolutionary-
based techniques have attracted increasing attentions for solving complex
optimization problems, and in particular for many real world OR/MS prob-
lems, because these techniques are more robust than traditional methods
based on formal logics or mathematical programming. Roughly speaking,
evolutionary computation is the study of computational systems which use
ideas and get inspirations from natural evolution and adaptation. It aims
at understanding such computational systems and developing more robust
and efficient ones. The problems dealt with such computational systems are
usually highly nonlinear and contain inaccurate and noisy data.

2.2 Traditional versus non-traditional search

Before solving an optimization model, it is important to consider the form
and mathematical properties of the objective function, constraints, and de-
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CAPITOLO 2. A GENTLE INTRODUCTION TO EC

cision variables. For example, the objective function might be linear or
nonlinear, differentiable or non-differentiable, concave or convex. The deci-
sion variables might be continuous or discrete. The feasible region might be
convex or non-convex. Since these differences impact on how the model can
be solved, optimization models are classified according to them. Search and
optimization techniques may be broadly classified into three categories:

e ENUMERATIVE SCHEMES
They are perhaps the simplest search strategy. Within some defined
finite, or discretized infinite, search space each possible solution is eval-
uated. An example of this search is dynamic programming. However,
enumerative technique is inefficient or even infeasible as search spaces
become large.

e DETERMINISTIC METHODS
As many real-world problems are computationally intensive, some
means of limiting the search space must be implemented to find “ac-
ceptable” solutions in “acceptable” time. Deterministic algorithms at-
tempt this by incorporating problem domain knowledge. Greedy and
calculus-based methods, branch and bound tree/graph search schemes
are all deterministic methods successfully used in solving a wide variety
of problems (the interested reader my refer to Brassard and Bratleyl
(1988) and [Neapolitan and Naimipour (1996)). More precisely, greedy
algorithms make locally optimal choices, assuming optimal sub-solu-
tions are always part of the globally optimal solution. Thus, these
algorithms fail when this assumption results false. Calculus-based
methods, also called numerical methods, use a set of necessary and
sufficient conditions that must be satisfied by the optimization prob-
lem for an optimal value to be found. These methods can be further
subdivided into two categories: direct and indirect strategies. Direct
search methods perform a hill-climbing on the search space by mov-
ing in a direction related to the local gradient. In indirect methods,
the solution is sought by solving a set of equations resulting from set-
ting the gradient of the objective function to zero. Since they assume
the existence of derivatives and are local in scope, calculus-based al-
gorithms work best on unimodal functions, but the presence of local
optima, plateaus, or ridges in the fitness/search landscape reduce their
effectiveness, as highlighted in [Russell and Norvig (1995). Branch and
bound search techniques need problem specific heuristics and decision
algorithms to limit the search space. They compute some bound at a
given node which determines whether the node is “promising”; several

18
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nodes’ bounds are then compared and the algorithm branches to the
“most promising” node. For a more detailed description of the proce-
dure one may refers to Neapolitan and Naimipour (1996).
Mathematical programming is further classified according to the prop-
erties of constraints and/or the objective function. Linear program-
ming is designed to solve problems in which the objective function and
all constraint relations are linear. Conversely, nonlinear programming
techniques solve problems not meeting those restrictions but require
convex constraint functions. It is noted here that many problem do-
main assumptions must be satisfied when using linear programming,
and that many real-world scientific and engineering problems may only
be modeled by nonlinear functions. Finally, stochastic programming is
used when random-valued parameters and objective functions subject
to statistical perturbations are part of the problem formulation. De-
pending on the type of variables used in the problem, several variants
of these methods exist (i.e. discrete, integer, binary, and mixed-integer
programming, following the classification made by Schwefel (M))

GUIDED RANDOM SEARCH TECHNIQUES

All the aforementioned search methods are successfully used in solv-
ing a wide variety of problems. When problems are high dimen-
sional, or discontinuous or multimodal, or NP-complete, these tech-
niques are unsuitable because they require problem domain knowledge
(heuristics) to direct or limit search in these exceptionally large search

spaces (see for example Michalewicz and Fogel (2004)). Guided ran-

dom search and optimization approaches such as simulated annealini

see [Kirkpatrick et all (1983)), Monte Carlo methods (see

), tabu search (see [Glover and Laguna (1997)) and evolution-
ary computations (see (Goldberg (1989), Michalewitz (1994) and [Béick
(@)), also called evolutionary algorithms, have been developed as
alternative techniques for solving these problems. Stochastic tech-
niques are based on enumerative methods, but they use additional
information about the search space to guide the search to potential
better regions. They require a function assigning fitness values to
possible (or partial) solutions and an encode/decode mapping mech-
anism between the problem and the algorithm domains. Although
some stochastic techniques are shown to “eventually” find an opti-
mum, most cannot guarantee the optimal solution. They usually pro-
vide good/near-optimal solutions to a wide spectrum of optimization
problems which traditional deterministic techniques find difficult to

19




CAPITOLO 2. A GENTLE INTRODUCTION TO EC

solve.

A random search is the simplest stochastic search strategy, as it simply
evaluates a given number of randomly selected solutions. A random
walk is very similar, except that the next solution evaluated is random-
ly selected using the last evaluated solution as a starting point. Like
enumeration, though, these strategies are not efficient for many prob-
lems because of their failure to incorporate problem domain knowledge.
Random searches can generally expect to do no better than enumera-
tive ones, as shown in [Goldberg (1989).

Simulated annealing is an algorithm explicitly modeled on an anneal-
ing analogy, where for example a liquid is heated and then gradually
cooled until it freezes. Where hill-climbing chooses the best move
from some initial point, simulated annealing picks a random one. If
the move improves the current optimum it is always executed, else it
is made with some probability p < 1. This probability exponentially
decreases either with time or with the amount by which the current
optimum is worsened (see Russell and Norvig (1995)). If water’s tem-
perature is lowered slowly enough it attains the lowest-energy con-
figuration; the analogy for simulated annealing is that if the “move”
probability decreases slowly enough, the global optimum is found.

In general, Monte Carlo methods involve simulations dealing with
stochastic events; they employ a pure random search where any se-
lected trial solution is fully independent of any previous choice and
its outcome. The current “best” solution and associated decision vari-
ables are stored as a comparator.

Tabu search is a meta-strategy developed to avoid getting “stuck”
on local optima. It keeps a record of both visited solutions and the
“paths” which reached them in different “memories”. This informa-
tion restricts the choice of solutions to evaluate next. Tabu search
is often integrated with other optimization methods, as described in
Glover and Laguna (1997) and [Schwefel (1995).

Evolutionary computation (EC) is a generic term for several stochastic
search methods which computationally simulate the natural evolution-
ary process. EC embodies the techniques of genetic algorithms (GAs),
evolution strategies (ESs), and evolutionary programming (EP). These
techniques are loosely based on natural evolution and the Darwinian
concept of survival of the fittest. Common between them are the re-
production, random variation, competition, and selection of contend-
ing individuals within some population. In general, an EA consists
of a population of encoded solutions, called individuals, manipulated

20
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by a set of operators and evaluated by some fitness function. Each
solution’s associated fitness determines which survive into the next
generation.

2.3 Evolutionary algorithms terminology

The mimicked search process of natural evolution can yield very robust,
direct computer algorithms, although these imitations are crude simplifi-
cations of biological reality. The resulting evolutionary algorithms (EAs)
encode the decision variables of a search problem into finite-length strings
of alphabets of certain cardinality. The string which are candidate solutions
are referred to as chromosomes, the alphabets are referred to as genes and
the values of genes are called alleles (see Table 2] for a complete nomencla-
ture). EAs are based on the collective learning process within a population
of individuals, which is arbitrarily initialized and evolves towards better and
better regions of the search space by means of randomized processes of se-
lection, mutation, and recombination. The environment delivers a quality
information of the search points, represented by the value of a given fitness
function, and the selection process favours those individuals of higher fitness
to reproduce more often than worse individuals. The recombination mech-
anism allows the mixing of parental information while passing it to their
descendants and mutation introduces innovation into the population. To
formally define an EA, its general structure has to be described in mathe-
matical terms, allowing for exact specification of various EA instantiations.
Having discussed the relevant background terminology, an EA can be then
identified by the following definition and template which are inspired from

(2007).

Definition 1 (Evolutionary algorithm). Let I be the space of coded indi-
viduals, an algorithm structured to search for the best solution to a given
problem, represented by an objective function ® : I — R, that uses the
following features:

1. {uD}ien and {1/ }ien, which are two sequences in Zt representing
the parent and the offspring population sizes respectively,

2. T :1— I, which is a population transformation,

3o U2, Y {true, false}, which is the termination criterion,
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CAPITOLO 2. A GENTLE INTRODUCTION TO EC

EA term Significance

Genotype the code, devised to represent the parameters
of the problem in the form of a string

Chromosome  one encoded string of parameters
(binary, Gray, floating point number)

Individual one of more chromosomes with an associated
fitness value

Gene the encoded version of a parameter of the
problem being solve

Allele value which a gene can assume (binary, integer)

Locus the position that the gene occupies in the chromosome

Phenotype Problem version of the genotype (algorithm version),
suited for being evaluated

Fitness real value indicating the quality of an individual as
a solution to the problem

Environment the problem and is represented as a function indication
the suitability of phenotypes

Population a set of individuals with their associated statistics
(fitness average, Hamming distances)

Selection policy for selecting one individual from the population
(selection of the fittest)

Crossover operation that merges the genotypes of two selected
parents to yield two new children.

Mutation operation than spontaneously changes one or more

alleles of the genotype

Tabella 2.1: Nomenclature in EA
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4. {r(i)}ieN, which is a sequence of recombination operators, such that
r® 0 o x Qw — T ([“("))

where T (I“(i)) -l (i), O, indicates the parameter space and 2,

is the subset of 1 to which the operator r® is applied,

5. {m(i)}iEN, which is a sequence of mutation operators, such that
m@ - 0, X Q@ — I" ()

where ©,,u) indicates the parameter space and €1,y is the subset of

1Y 4o which the operator m® s applied,

0. {s(i)}ieN, which is a sequence of selection operators, such that
s(’l) . ®s(i) X Qs(i) N Iu(i+l)

where Oy indicates the parameter space and € i) is the subset of
U1 to which the operator s is applied,

and that may be designed as showed in Figure 21 is called an evolutionary
algorithm.

In particular, Definition [ takes into account for EA variants where the re-
sulting populations have a size different to their predecessors, introducing
the population transformation function 7. Moreover this definition admits
sequences {r(i)}ieN of different types of recombination operators that com-
bine alleles of solutions from I*" in a “crossover” operation, inspired by
the crossover of DNA strands that occurs in reproduction of biological or-
ganisms, to generate the offsprings in [ 1Y The sequences of mutation
operators, {m(i)}ieN, are applied to a subset of the descendants, I “,(i), in
order to make random changes or mutations in one or more individuals,
yielding new candidate solutions (which may be better or worse than ex-
isting population members). Instead, selection operators consider both the

population of parents and that of offsprings, I w9y u (i), to determine the
next population, I
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Evolutionary Algorithm

t:=0;
Initialize
P(0) = {a1(0),...,a,(0)} € 1)
While (({P(0),...,P(t)}) # true do
e recombine: P’(t) :r(t(z)( P(t)) % where 6 € %
e mutate: P”(t) := ((:()t) (P'(t)) % where 0 € 0 %
o select:
If x is true
then P(t + 1) = 5“(1) (P"(t)) % where 6 € Y %
else P(t+1) = 502) (P"(t) U P(t))
end

e update: t=1t+1;

end
Figura 2.1: The fundamental structure of an evolutionary algorithm

2.4 Evolutionary algorithms foundations

Three main streams of instances of the algorithm in Figure 2] developed
independently of each other, can nowadays be identified:

e cvolutionary programming (EP orlglnallf develo g bym

) in the U.S. and recently refined by

e evolution strategies (ESs), developed in Germany by Rechenberg (1973)
ancl el (1951);

e genetic algorithms (GAs) by Holland (@) developed in the U.S.
with refinements by DeJong (1973), [Grefenstettd (1983) and [Goldberg

(1989).

All evolutionary algorithms have two prominent features which distinguish
themselves from other search algorithms. First, they are all population-
based. Second, there is communications and information exchange among
individuals in a population. Such communications and information exchange
are the result of selection and/or recombination. From a philosophical per-
spective, theese algorithms differ mainly in the level at which they simulate
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EA type Representation Evolutionary operators

EP real values mutation and
(1 + X) selection alone

ES real values mutation, recombination
and (p+ M) or (u, \) selection

GA binary and mutation, recombination
real values and selection

Tabella 2.2: Key EA implementation differences

evolution. From a computational point of view, they differ mainly in their
representations of potential solutions and their operators used to modify the
solutions. Table reports the major differences of these main stream algo-
rithms in terms of two key issues: representation and search. In particular,
for evolutionary programming and evoution strategies, there are two major
deterministic selection schemes, i.e. (p+\)-scheme and (u, A)-scheme, where
 is the population size (which is the same as the number of parents) and A
the number of offspring generated from all parents. In (u 4+ \)-schemes the
u fittest individuals from p 4 A candidates will be selected to form the next
generation. In (u, A)-schemes, the u fittest individuals from A offspring only
will be selected to form the next generation. As a result, A > pu is required.
For an in-depth analysis of general evolutionary operators and EA compo-
nents, interested readers are directed to Bick et all (|_19_9l|)

In literature, there are numerous variants of classical evolution strategies,
evolutionary programming and genetic algorithms described above. Some of
the evolutionary algorithms can hardly be classified into any of these three
categories. Evolutionary computation includes much more than just three
kinds of algorithms. It also covers topics such as artificial immune systems,
artificial ecological systems, co-evolutionary systems, evolvable hardware,
self-adaptive systems. All the above EAs have clearly demonstrated their
capability to yield good approximate solutions even in case of complicated
multimodal, discontinuous, non-differentiable, and even noisy or moving re-
sponse surfaces of optimization problems. Within each research community,
parameter optimization has been a common and highly successful theme of
applications. Evolutionary programming and especially genetic algorithms,
however, were designed with a very much broader range of possible ap-
plications in mind and confirmed their wide applicability by a variety of
important examples in fields like machine learning, control, automatic pro-
gramming and planning.
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This thesis focuses on the applicability of GAs in the financial field for
parameter optimization purposes as well as for time series pattern recogni-
tion and econometric model-building. In this sense, the following sections
describe more deeply features and characteristics of this type of EAs.

2.5 Genetic algorithms

GAs are probably the best known EAs, receiving remarkable attention all
over the world. John Holland’s research interests in the sixties were devoted
to the study of general adaptive processes, concentrating on the idea of a
system receiving sensory inputs from the environment by binary detectors
(see )). Structures in the search space were progressively mod-
ified in this model by operators selected by an adaptive plan, judging about
the quality of previous trials by means of an evaluation measure.
(@) points out how to interpret the so-called reproductive plans in terms
of genetics, economics, game-playing, pattern recognition, and parameter
optimization. His genetic plans, or GAs, were applied to parameter opti-
mization for the first time by (@), who laid the foundations of
this application technique. Nowadays, numerous modifications of the orig-
inal GA, usually referred to as the canonical GA, are applied to all (and
more) fields Holland had indicated. However, many of these applications
show enormous differences to the canonical GA and the boundary to the
other algorithms discussed above becomes blurred. Important examples of
non-canonical GAs include the GENITOR system developed by @m
(@), the SAMUEL system proposed by (Gordon and Grefenstette (Ilwd),
and the GAs in [Davis (@) The last few decades have witnessed great
strides toward the development of the so-called competent GAs, which solve
hard problems quickly, reliably and accurately, basing on a design decom-
position methodology and mechanistic versions of certain modes of human

innovation (see (Goldberd (2002)).

2.5.1 Design guidelines

There are six issues leading to practical GA design. These are described
below.

1. REPRESENTATION
This issue is primarily related to the encoding scheme. Individuals are
represented by binary codes, real-valued (i.e. floatingpoint) codes, and
program code. Moreover, the length of individuals may be constant
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or variable. In general, it is hard to find an encoding method that
transforms a problem so as to reduce or preserve the difficulty of the
problem itself. Hence, the encoding method that has identical geno-
type and phenotype of the decision variables is advisable. Although
fixed-length individuals are generally desirable, their variability is not
a critical factor provided their design is easy.

. INITIALIZATION

In general, there are two issues to be considered for population ini-
tialization of GAs: the initial population size and the procedure to
initialize the population. At first, the initial population size connect-
ed to the supply of raw building-blocks, or shortly BBs (see the next
section for a comprehensive explanation) is crucial for efficiency of GAs
in terms of both optimality and complexity. Secondly, there are two
ways to generate the initial population: random and heuristic initial-
ization. If no prior information on the problem is available, random
initialization is the natural choice; otherwise, heuristic initialization
is favored. Although the mean fitness of the heuristic initialization
is already high so that it may help the GAs to find solutions faster,
it may just explore a small part of the solution space and never find
global optimal solutions because of lack of diversity in the population
(see Beyer and Schwefel (2002)). In the heuristic case, thus, a portion
of the population can still be generated randomly to ensure some di-
versity in the population. It is noted that the random initialization
is generally desirable for stability and simplicity of GAs even when a
valuable piece of information is available.

. FITNESS FUNCTION

The fitness function interprets the individual in terms of physical rep-
resentation and evaluates its fitness based on desired traits (in the
solution). But, the fitness function must accurately measure the qual-
ity of the individuals in the population. The definition of the fitness
function, therefore, is very crucial. It is suggested that the fitness
function fully reflect the physical objective of the problem.

. GENETIC OPERATORS

The genetic operators must be carefully designed as they directly af-
fect the performance of GAs. They are usually divided into three
cathegories:
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i)

ii)

Selection operators

Selection focuses on the exploration of promising regions in the
solution space. As proportionate selection is very sensitive to the
selection pressure, a scaling function is employed for redistribut-
ing the fitness range of the population. The selection pressure
of the ordinal selection is independent of the fitness distribution,
and is based solely based on the relative ranking of the popula-
tion although it may also suffer from high selection pressure. In
general, the ordinal selection is preferable. Among the selection
schemes (in the ordinal selection), tournament selection without
replacement is perceived to be effective in achieving low (selec-
tion) noise. Recall that tournament selection without replace-
ment works by means of choosing nonoverlapping random sets
of s individuals (i.e. tournament size of s) from the population
and then selecting the best individual from each set to serve as a
parent for the next generation. Typically, the tournament size s
is 2 (viz., pairwise tournament), and it would adjust the selection
pressure: the selection pressure increases as the tournament size
s becomes larger. In this regard, pairwise tournament selection
without replacement is advisable.

Recombination operators

Recombination, also known as crossover, is the primary operator
that increases the exploratory power of GAs. In order to suc-
cessfully achieve the crossfertilizing type of innovation, crossover
operator must ideally intermix good subsolutions without any
disruption of the partitions, i.e. BBs. For example, uniform
crossover is very promising in the absence of any inter-gene link-
age while building-block crossover is better otherwise. Here,
building-block crossover uniformly shuffles the genes on the ba-
sis of entire partitions, i.e. subsolutions. In practice, uniform
crossover is pessimistic as most of real-world problems have the
decision variables that are closely interacted each other. More-
over, building-block crossover may also be undesirable because
the capability of learning linkage is an essential prerequisite of
the operator. Instead of pursuing the maximum BB-wise mixing
in the population, it can be also efficient to increase the popula-
tion size and employ a simple crossover that has a low probability
of disrupting the BBs found so far. Therefore, it is recommend-
ed that building-block crossover is suitable if the evaluation of
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fitness function requires a high computational cost; otherwise,
one- or two-point crossover is desirable. Naturally, the crossover
probability must be relatively high.

ili) Mutation operators

Mutation is the secondary operator of GAs to explore a solution
space. In other words, a local search is performed in the case
of altering nonsalient genes or getting away from local optima
is possible when the salient genes are changed. To carry out
the continual improvement type of innovation, as in nature, the
probability of applying mutation must be very low. Hence, the
suggestion with respect of mutation is that any type of mutation
designed is applicable as long as its probability is quite small.
Moreover, it is possible to get rid of mutation when the design of
mutation operator is complicated.

5. TREATING INFEASEABLE INDIVIDUALS
When a problem has some constraints, crossover or mutation may often
generate infeasible individuals that violate the constraints. There are
two strategies to deal with infeasible individuals: one is to impose
a penalty and the other is to repair them (see Beyer and Schwefel
(@) for a detailed description). A classical method employs penalty
functions. It must be noted that the penalty function is critical to
ensure quick convergence and high quality of solution. But it is not
easy to come up with an appropriate penalty function. Moreover, this
technique may sacrifice some feasible individuals as well because the
infeasible individuals might continue to be reproduced. On the other
hand, the repair method is applied extensively. But it is not always
simple to cure infeasible individuals. Hence, the repair strategy is
always advisable unless developing a repair function is an arduous
task or the designed function is computationally too expensive by far.

6. POPULATION SIZE
A problem that arises with GAs is to properly estimate the values of
parameters. Most of the parameters can be determined by the tran-
scendental cognition of practitioners so as to attain good performance.
However, it is not easy to estimate the population size that guaran-
tees an optimal solution quickly enough. Thus, the population size
has generally been perceived as the most important factor. A recent
study has developed a refined population-sizing model by integrating
the requirements of the BB supply and decision making. It provides an
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accurate bound on determining an adequate population size that guar-
antees a solution with desired quality for GAs. However, it requires
stochastic information such as the variance of fitness (i.e. noise) and
the expected difference value of fitness (i.e. signal) between the best
and second-best BBs, which may not be available in many practical
problems.

2.5.2 Why do GAs work?

Exactly how and why GAs work is still hotly debated. There are various
schools of thought, and none can be said to provide a definitive answer.
One of the difficulties in analyzing GAs is that there is not a single generic
GA, the behaviour of which will characterize the class of algorithms that
it represents. In practice, there is a vast number of ways to implement
a GA and what works in one case may not work in another. Some re-
searchers have therefore tried to look for ways of predicting algorithm per-
formance for particular problem classes. A comprehensive survey is available

in Reeves and Rowd (M) Meanwhile, the following is a brief guide to the

main concepts that have been used.

The traditional view

Holland’s explanation of why it is advantageous to search the space of coded
chromosomes rather than the search space hinges on three main ideas. Cen-
tral to this understanding is the concept of schema. A schema is a subset
of the space of coded chromosomes in which all the strings share a partic-
ular set of defined values. This can be represented by using the alphabet
AU x; in the binary case, 1 * * 1, for example, represents the subset of the
4-dimensional hypercube {0,1}* in which both the first and last genes take
the value 1, i.e. the strings {1001, 1011, 1101, 1111,}.

The first of Holland’s ideas is the intrinsic, or implicit, parallelism in accor-
dance to which the information on many schemata can be processed in par-
allel. Under certain conditions that depend on population size and schema
characteristics, Holland estimated that a population of size N contains in-
formation on O(N?) schemata. However, these schemata cannot actually be
processed in parallel, because independent estimates of their fitness cannot
be obtained in general.

The second concept is expressed by the so-called Schema Theorem, in which
Holland showed that if there are N (S, t) instances of a given schema S in the
population at time ¢, then at the next generation, or time step, the expected
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number of instances in the new population can be bounded from below as
follows:
F(5,1)

EIN(S,t+1)] > )

N(S,t)[1 —€(S,1)],

where F(S,t) is the fitness of schema S, F(t) is the average fitness of the
population, and €(S,t) is a term which reflects the potential for genetic op-
erators to destroy instances of schema S.

Some conclusions have been drawn from this theorem, expressed in the fre-
quently made statement that good schemata will receive exponentially in-
creasing numbers of trials in subsequent generations. However, as recent
literature highlights, it is clear that the Schema Theorem is a result in ex-
pectation only for one generation. Thus, any attempt to extrapolate this
result for more than one generation is doomed to failure because the terms
are then no longer independent of what is happening in the rest of the pop-
ulation. Also, given a finite population, it is clear that any exponential
increase cannot last very long.

Holland also attempted to model schema processing (or hyperplane compe-
titions) by means of an analogy to stochastic two-armed bandit problems.
This is a well known statistical problem: there are two “levers” which if
pulled give payoff values according to different probability distributions.
The problem is to use the results of previous pulls in order to maximize the
overall future expected payoff. In m (Il_f)b) it is argued that a GA ap-
proximates an optimal strategy which allocates an exponentially increasing
number of trials to the observed better lever; this is then used to contend
for the supposed efficiency of a GA in distinguishing between competing
schemata or hyperplanes.

Following these ideas, early studies on GAs suggested quite strongly that in
a GA it had thus been discovered an algorithm that used the best available
search strategy to solve not merely one, but many hyperplane competitions
at once. Recently, however, “No-Free-Lunch” Theorem (NFLT) developed
by Wolpert_and Macready (Il&‘ﬂl) has rather destroyed such dreams. In fact,
intrinsic parallelism turns out to be of strictly limited application; it merely
describes the number of schemata that are likely to be present in some num-
bers given certain assumptions about string length, population size and,
most importantly, the way in which the population has been generated.
Even then, only in very unusual circumstances could the hyperplane compe-
titions actually be processed in parallel; normally, the competitions are not
independent. The two-armed bandit analogy also fails in at least two ways:
first, Macready and Wolpertl (ILM) have recently argued that there is no
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reason to believe that the strategy described by Holland as approximated
by a GA is an optimal one.

This is not to say that the Schema Theorem in particular, or the idea of a
schema in general, is useless, but that what it says is of limited and mainly
short-term value, i.e. certain schemata are likely to increase their presence
in the next population and will be on the average fitter, and less resistant
to destruction by crossover and mutation, than those that do not.

This brings to the third assumption implicit in the implementation of a GA
— that the recombination of small pieces of the genotype (good schemata)
into bigger pieces is indeed a sensible method of finding optimal solutions.
(Goldberg (1989) calls this the building-block hypothesis (BBH). There is
certainly some negative evidence, in that problems constructed to contain
misleading building-blocks may indeed be hard for a GA to solve. The fail-
ure of the BBH is often invoked as an explanation when a GA fails to solve
particular complex problems.

However, the properties of these problems are not usually such that they
are uniquely difficult for GAs. Holland himself, with two other co-workers,
looked for positive evidence in favour of the BBH (see Mitchell et all (1994))
and found the results rather problematical: functions constructed precisely
to provide a “royal road” made up of building blocks of increasing size and
fitness turned out to be more efficiently solved by “non-genetic” methods.

Other approaches

By writing his theorem in the form of a lower bound, Holland was able to
make a statement about schema S that is independent of what happens to
the other schemata. However, in practice what happens to schema S will in-
fluence the survival of other schemata, and what happens to other schemata
will affect what happens to S as is made plain by the exact models of
(1993) and [Whitley (1993).

Markov chain theory has been applied to GAs to gain better understand-
ing of the GA as a whole. However, while the results are fascinating in
illuminating some nuances of GA behaviour, the computational require-
ments are formidable for all but the smallest of the problems, as shown
by K. A. DeJong and Gordonl (1995) and [Rees and Koehler (1999).
Shapiro et all (IL%A) first examined GAs from a statistical perspective and
[Peck and Dhawan d19_9ﬂi have linked GAs to global randomized search meth-
ods. Studies such as (@) have also pointed out connections between
GA and neighbourhood search methods. But one of the difficulties in an-
alyzing GAs is that there is not a single generic GA. B@gﬁmj@gm
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(@) explain a perspective based on relating GAs to statistical methods of
experimental design, which draws upon biological concept of epistasis. This
represents the idea that the expression of a chromosome is not merely a sum
of the effects of its individual alleles, but that the alleles located in some
genes influence the expressions of the alleles in others. From a mathemati-
cal viewpoint, epistasis is equivalent to the existence of interactions in the
fitness function. If one knew the extent of this non-linearities, he/she might
be able to choose an appropriate algorithm. Unfortunately, as explained in
(@), it is unlikely that this approach will be successful, although
the literature surrounding the question of epistasis has produced some useful
insights into GAs.

2.6 Multi-objective genetic algorithms

In many real-world situations there may be several objectives that must
be optimized simultaneously in order to solve a certain problem. This is
in contrast to the problems tackled by conventional GAs, which involve
optimization of just a single criterion. The main difficulty in considering
multi-objective optimization is that there is no accepted definition of opti-
mum in this case, and therefore it is difficult to compare one solution with
another one. An approach for solving such multi-objective problems is to
optimize each criterion separately and combine the solutions thus obtained.
However, this method is seldom likely to provide a solution where each cri-
terion is optimally balanced. In fact, it may happen that optimizing one
objective may lead to unacceptably low performance of another objective.
For example, consider the case of planning a trip from place X to place Y.
The objectives here are to minimize the time as well as the cost of the trip.
It is evident that the two objectives are conflicting in nature, i.e. if time
is minimized, the cost goes up and vice versa. Therefore, there cannot be
a single optimum in this case. Thus, for solving multi-objective problems
all the objectives need to be treated together. In general, these problems
admit multiple solutions, each of which is considered acceptable and equiv-
alent when the relative importance of the objectives is unknown. The best
solution is subjective and depends on the need of the designer or decision
maker.

2.6.1 Multi-objective optimization terminology

In this section I refer to the minimization problem for the definition of a
multi-objective optimization problem. It may be observed that the maxi-
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mization problem may be expressed in terms of a minimization one, simply
by considering the opposite of the objective functions.

In this manner, the multi-objective optimization problem can be stated as
follows

min[f1(x) fa(x) ... fr(x)]

subject to the m inequality constraints

gi(x) <0 i=12...,m

and the p equality constraints

hi(x) =0 i=1,2,....p

where k is the number of objective functions f; : R® — R. The vector
X = [r1 22 ... z,]7 is called vector of decision variables. The decision
maker wish to determine from among the set F of all vectors which satisfy
Equations and the particular set of values 2] x5 ... x; which yield
the optimum values of all the objective functions.

2.6.2 Pareto optimality

It is rarely the case that there is a single point that simultaneously optimizes
all the objective functions of a multi-objective optimization problem. There-
fore, one normally looks for “trade-offs”, rather than single solutions when
dealing with multi-objective optimization problems. The notion of “opti-
mality” is therefore different in this case. The most commonly adopted
notion of optimality is the Paretian.

Definition 2 (Pareto optimality). A vector of decision variables x* € F is
Pareto optimal if there does not exist another x € F such that f;(x) < f;(x*)
foralli=1,...,k and fj(x) < f;(x*) for at least one j.

In words, this definition says that x is Pareto optimal if there exists
no feasible vector of decision variables x € F which would decrease some
criterion without causing a simultaneous increase in at least one other crite-
rion. Unfortunately, this concept almost always gives not a single solution,
but rather a set of solutions called the Pareto-optimal set. The vectors x*
correspoding to the solutions included in the Pareto-optimal set are called
non-dominated. The image of the Pareto-optimal set under the objective
functions is called Pareto front.
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2.6.3 Multi-objective algorithms

The multi-objective optimization includes many different techniques. Thus,
it is hard to summarize all of them, however, to give an idea about the most
common methods used in the literature, a short overview follows. for a more

deep insight the interested reader may consult to [Coello et all (|2_ODZ|) and
the references therein included.

e AGGREGATING TECHNIQUES:

Weighted sum approach, where the different objectives are com-
bined using weighting coefficients w;, ¢ = 1,2,...,k. The objec-
tive to minimize become Zle w; fi(x).

Goal programming-based approach, where the user is required to
assign targets, or goals, T;, ¢ = 1,2,...,k, for each objective.
The aim then becomes the minimization of the deviation from
the targets to the objectives, or Zle |fi(x) — T3]

Goal attainment-based approach, where the user is required to
provide, in addition to the vector of goals, a vector of weights w;,
i =1,2,...,k, linking the relative under- or over-attainment of
the desired goals.

e-constraint approach, where the primary objective function is
minimized and the other objectives are treated as constraints
bound by some allowable levels ;.

e POPULATION-BASED NON-PARETO TECHNIQUES:

Vector evaluated genetic algorithm (VEGA) that incorporates a
special selection operator in which a number of sub-populations
were generated by applying proportional selection according to
each objective function in turn.

Lezxicographic ordering, where the objectives are ranked in order
of importance by the user, and optimization is carried out on
these objectives according to this order.

Use of game theory, where it is assumed that a player is associated
with each objective.

Gender-based schemes for identifying the objectives, where pan-
mitic reproduction, in which several parents combine to produce
a single child, is allowed.
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— Contact theorem based procedures for detecting Pareto-optimal

solutions, where the fitness of an individual is set according to its
relative distance with respect to the Pareto set.

— Non-generational GAs, where multi-objective problem is trans-

formed into a single-objective one through a set of appropriate
transformations and the fitness of an individual is calculated in-
crementally. Genetic operations are utilized to produce a single
individual that replaces the worst individual in the population.

e PARETO-BASED NON-ELITIST STRATEGIES:

— Multiple objective GA (MOGA) in which an individual is assigned

a rank corresponding to the number of individuals in the current
population by which it is dominated increased by 1. All non-
dominated individuals are ranked 1. Fitness of individuals with
the same rank are averaged so that all of them are sampled at
the same rate. A niche formation method is used to distribute
the population over the Pareto-optimal region.

Niched Pareto GA, where a Pareto dominance-based tournament
selection with a sample of the population is used to determine the
winner between two candidate solutions. Around ten individuals
are used to determine dominance, and the non-dominated indi-
vidual is selected. If both the individuals are either dominated
or non-dominated, then the result of the tournament is decided
through fitness sharing.

Non-dominated sorting GA (NSGA), where all non-dominated
individuals are classified into one category, with a dummy fit-
ness value that is proportional to the population size. Then
this group is removed and the process repeated on the remain-
ing individuals iteratively until all the individuals are classified.
Stochastic-remainder-proportionate selection is used in this tech-
nique. With this scheme, any number of objective functions, and
both maximization and minimization problems can be solved.

e PARETO-BASED ELITIST STRATEGIES:

— Strength Pareto Evolutionary Algorithm (SPEA) introduces the

elitism explicitly by maintaining an external population called an
archive. At any generation ¢, two populations co-exist:

i) population P; of size N;
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ii) external population, also called archive, P/ of maximum size
N'.

All the non-dominated solutions of P; are stored in P/. Fitness

is assigned to all the individuals in population P, and archive P/

as follows: individuals in the archive P} are assigned strength S;

using the equation
n

5= +1
where n is the number of population members dominated by in-
dividual 7 of P/ in the population and N is the total number of
the individuals in the population. The fitness of the members
in the archive is taken to be equal to their strength values. The
fitness of the individual 7 in P; is calculated as:

fi:1—|- Z Sj

JEP, j>i

where j > i indicates that member j of the archive dominates
member ¢ of the population P;. Fitness is determined relative to
the individuals stored in the archive, irrespective of the relative
dominance between the members of P;. Binary tournament se-
lection with assigned fitness followed by crossover and mutation
operators creates the new population P, of size N. The non-
dominated members of P11 are copied into the archive, which is
updated by deleting any dominated solutions if present. In case
the size of the archive exceeds N’ , clustering-based niching is
used to reduce it.

Strength Pareto Evolutionary Algorithm II (SPEA2): two poten-
tial weaknesses of SPEA are

i) Fitness assignment is determined entirely on the basis of the
strength of archive members. This results in individuals hav-
ing the same fitness value in P, if the corresponding set
of dominating members in the archive is the same. In the
worst case, if the archive contains one member, then all the
members of the population will have the same rank.

ii) The clustering technique used for ensuring diversity may lose
the outer solutions, which should be kept in the archive to
obtain good spread of the non-dominated solutions.

SPEA2 was developed to avoid the situation where individuals
dominated by the same archive members have the same fitness
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values. SPEA2 considers both the population and the archive to
determine the fitness. Strength S; of each individual i, belonging
to either P, or P/, is set equal to the number of individuals it
dominates. A raw fitness R; is then assigned to the individual 4

as
Ri= > S
JE{PUP]}, j>i
Here R; = 0 corresponds to the non-dominated members. The
final fitness of 7 is computed as

F; =R, +D;

where D; is the density of individual 7, computed based on its
distance to the k-th nearest neighbor in the objective space. A
different scheme for updating the archive that prevents the loss
of the boundary solutions is adopted.

— FElitist Nondominated Sorting Genetic Algorithm (NSGA-IT) was
proposed to resolve the weaknesses of NSGA, specially its non-
elitist nature. Here the chromosomes in a population are first
sorted based on their domination status using the non-dominated
sorting, which results in all the chromosomes being assigned a
rank. The selection that follows uses the crowded tournament
strategy. Crossover and mutation are then performed to generate
a new child population. The parent and the child population are
combined, and elitism is applied to generate the next population.

Some other related and promising techniques in this regard are based on

other methods such as evolutionary strategies (Knowles and Cornd (2000)),
tabu search (Baykasogld (2001)), particle swarm optimization (Baumgart-

ner et al. (2004)), integration of tabu search and evolutionary algorithm
)), and ant colony optimization (Garcia-Martinez et al.
(2004)).Multi-objective GAs have evolved as a viable alternative for solving
problems where the purpose is to optimize several objectives simultaneously.
An important aspect of such techniques is that the decision maker is pro-
vided with a set of possible alternative solutions, as well as an intermediate
solution, which the decision maker may subsequently refine.
A study establishing the effectiveness of some multi-objective optimization
techniques over their single-objective counterparts for the multi-objective set
covering problem with varying degrees of difficulty has been carried out in
Jaszkiewicz (IZDDj Theoretical analysis characterizing multi-objective op-
timization algorithms is made by Laumanns et all (I_(l)j) The possibility of
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generating a unified framework for these algorithms, where individual multi-
objective evolutionary algorithms could be generated by varying some pa-

rameter have been taken up in recent studies, such as|Bosman and Thierens
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Efficiency and predictability of financial
markets

This chapter first presents an overview of the literature on the predictabil-
ity of financial time series. In particular, the extent to which the efficiency
paradigm is affected by the introduction of new theories, such as behavioral
finance, is described in order to justify the market forecasting methodolo-
gies developed by practitioners and academics in the last decades. Then, a
description of the econometric and financial techniques that will be used in
conjunction with evolutionary algorithms in the next chapters is provided.
Special attention is paid to the economic significance, in order to highlight
merits and shortcomings from a practitioner perspective.

3.1 The behavior of prices

Economists have long been fascinated by the sources of variations in stock
markets. By the early 1970s a consensus had emerged among financial
economists suggesting that stock prices could be well approximated by a
random walk model and that changes in stock returns were basically unpre-
dictable. The cornerstone of these early studies is the concept of market
efficiency. In the following I describe the ideas behind the efficient market
hypothesis and its improvements that have lead to the justification and un-
derstanding of the predictability of stock returns from a theoretical point of
view.

3.1.1 Efficient market hypothesis

Financial markets are difficult to predict because predictions influence mar-
kets themselves. Indeed, forecasts are potential sources of profits or losses
and thus they produce market movements that in turn cause immediate
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changes in prices, thereby invalidating the predictions themselves. This
consideration leads to the following

Definition 3 (Market efficiency). A market is efficient if all new informa-
tion about the future behavior of prices is immediately reflected in the prices
themselves.

This definition is also known as the efficient market hypothesis (EMH hence-
forth) and has long been a dominant paradigm in describing the behavior
of prices in speculative markets. For example, ) provided an
early version of the hypothesis:

“If it is possible under any given combination of circumstances
to predict future price changes and have the predictions fulfilled,
it follows that the market expectations must have been defective;
ideal market expectations would have taken full account of the
information which permitted successful prediction of the price

changes.”
Successively, in (@), he revised his definition of a perfect futures
market to

“one in which the market price would constitute at all times the
best estimate that could be made, from currently available infor-
mation, of what the price would be at the delivery date of the
futures contracts.”

This definition of a perfect futures market is in essence identical to the
definition of an efficient market given by (@), who stated

“A market in which prices always fully reflect available informa-
tion is called efficient.”

This is exactly Definition Bl A more practical definition is given by
(@):

Definition 4. A market is efficient with respect to the information set €
if it is impossible to make economic profits by trading on the basis of ().

Jensen (@) groups the various versions of the EMH into the following
three testable forms based on the definition of the information set €;:

1. the weak form of the EMH, in which the information 2; only comprises
past and current prices as well as possibly dividends and variables such
as trading volume;

46




3.1. THE BEHAVIOR OF PRICES

2. the semi-strong form of the EHM, in which §2; expands to include all
publicly available information;

3. the strong form of the EMH, in which €); includes all public and private
information.

Timmermann and Qranggﬂ (IM) extends Jensen’s definition by specifying

how the information variables in §2; are used in actual forecasting

Definition 5. A market is efficient with respect to the information set ),
search technologies Sy and forecasting models My if it is impossible to make
economic profits by trading on the basis of signals produced from a forecasting
model M; defined over predictor variables in the information set €y and
selected using a search technology in Sy.

This definition emphasizes three points:
i) the importance of the information set €, adopted in the test;
ii) the ability to exploit this information in a trading strategy;

iii) that the yardstick for testing if the EMH holds is measured in economic
profits (i.e. risk-adjusted and net of transaction costs).

The concept of informational or market efficiency must be sharply distin-
guished from the notion of operational efficiency with which it is often
confused:

Definition 6 (Operational efficiency). A market will be called operationally
efficient if trades are executed at the lowest possible cost, i.e. if transaction
costs are minimal.

Transaction costs can be measured as the difference between the total cost
of an item to the buyer (ask price) and the net proceeds from that same
item to the seller (bid price). If there is active competition both in the stock
market and among brokers, these transaction costs are presumably minimal
and the market is operationally efficient. What matters, actually, is not the
size of transaction costs in the stock market compared with those in other
markets but what effect they have on the frequency of trading. Clearly, in-
dividual investors tend to keep their shares for long periods of time because
of the high costs of commission and bid-ask spread they have to pay in order
to sale and purchase a modest number of shares. It is not surprising, there-
fore, that institutional investors, with their lower transaction costs, turn
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over their portfolios more rapidly, while floor traders and specialists, who
have the lowest transaction costs of all, are in and out of the market many
times every day.

Traders with low transaction costs can respond quickly and easily to any
item of information relevant to share prices that reach them. Depending on
whether the news is favorable or unfavorable, they will buy or sell imme-
diately without having to worry unduly about transaction costs. Provided
there are enough traders with low transaction costs, all information avail-
able to these traders will have resulted in virtually instantaneous sales and
purchases and will be reflected in current prices. The market will then be
informationally efficient. It follows that operational efficiency is a prerequi-
site for informational efficiency. In a market where transaction costs are
relatively large, such as the housing market, high informational efficiency
should not be expected. Neither the stock market should be expected to
be informationally efficient if all traders had transaction costs as high as
those presently affecting small investors using “full-service” brokers. Even
though most important news items are widely disseminated, traders with
substantial transaction costs may not find them worth enough to modify
their investments. Whether the stock market is operationally efficient, i.e.
whether there is a sufficient number of traders with negligible transaction
costs, is essentially an empirical question on which a great deal of research
has been done in recent years.

In the academic literature, it is often tacitly assumed that transaction costs
can be ignored and, according to the EMH yet formulated, the stock market
is informationally efficient.

3.1.2 Other market hypothesis

Over the last two decades the efficient market paradigm has been increas-
ingly challenged by a growing number of alternative theories such as noisy
rational expectations models, feedback models, disequilibrium models, herd-
ing models, agent-based models and chaos theory. All these models postulate
that prices adjust sluggishly to new information due to noise, market fric-
tions, market power, investors’ sentiments, herding behavior or chaos. In
these models there exist profitable trading opportunities that are not being
exploited.

e NOISY RATIONAL EXPECTATIONS MODELS
The efficient markets model implies instantaneous adjustment of prices
to new information by assuming that the current equilibrium prices
fully impound all available information. It implicitly assumes that
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market participants are rational and they have homogeneous beliefs
about information. In contrast, noisy rational expectations equilibri-
um models assume that current prices do not fully reveal all available
information because of noise (unobserved current supply of a risky as-
set or information quality) in current equilibrium prices. Thus, prices
show a pattern of systematic slow adjustment to new information and
this implies the existence of profitable trading opportunities. Noisy
rational expectations equilibrium models were developed on the basis
of asymmetric information among market participants on one hand,
and of the speed and the efficiency with which a speculative market
responds to new information on the other hand (see, for example,

) and Brown and Jenningd (1989)).

NOISY TRADERS AND FEEDBACK MODELS

In the early 1990s, several financial economists developed the field
of behavioral finance, which is, roughly specking, the finance from a
broader social science perspective including psychology and sociolo-
gy (the interested reader may consult (@) for an introduc-
tion to the subject). In the behavioral finance model, there are two
types of investors: arbitrageurs (also called sophisticated investors or
smart money) and noise traders (feedback traders or liquidity traders).
Arbitrageurs are defined as investors who form fully rational expec-
tations about security returns, while noise traders are investors who
irrationally trade on noise as if it were information (m (@))
Noise traders may obtain their pseudo-signals from technical analysts,
brokers, or economic consultants and irrationally believe that these sig-
nals impound information. The behavioralists’ approach, also known
as feedback model, is then based on two assumptions. First, noise
traders’ demand for risky assets is affected by their irrational beliefs
or sentiments that are not fully justified by news or fundamental fac-
tors. Second, since arbitrageurs are likely to be risk averse, arbitrage,
defined as trading by fully rational investors not subject to such sen-
timent, is risky and therefore limited (Shleifer an merd (1990)).
In feedback models, noise traders buy when prices rise and sell when
prices fall, like trend chasers. For example, when noise traders fol-
low positive feedback strategies (buy when prices rise), this increases
aggregate demand for an asset they purchased and thus results in a
further price increase. Arbitrageurs having short horizons may think
that the asset is mispriced above its fundamental value, and sell it
short. However, their arbitrage is limited because it is always pos-
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sible that the market will perform very well (fundamental risk) and
that the asset will be even more overpriced by noise traders in the
near future because they can be even more optimistic (“noise trader
risk”, [DeLong et all (1990a)). As long as there exists risk created by
the unpredictability of noise traders’ opinions, sophisticated investors’
arbitrage will be reduced even in the absence of fundamental risk and
thus they do not fully counter the effects of the noise traders. Rather,
it may be optimal for arbitrageurs to jump on the “bandwagon” them-
selves. Arbitrageurs optimally buy the asset that noise traders have
purchased and sell it out much later when the asset price rises high
enough. Therefore, although ultimately arbitrageurs make prices re-
turn to their fundamental levels, in the short run they amplify the
effect of noise traders (DeLong et all (1990b)). On the other hand,
when noise traders are pessimistic and thus follow negative feedback
strategies, downward price movement drives further price decreases
and over time this process eventually creates a negative bubble. In the
feedback models, since noise traders may be more aggressive than ar-
bitrageurs due to their overoptimistic/overpessimistic or overconfident
views on markets, they bear more risk with higher expected returns.
As long as risk-return tradeoffs exist, noise traders may earn higher
returns than arbitrageurs. [DeLong et all (1991) further showed that
even in the long run noise traders as a group survive and dominate
the market in terms of wealth despite their excessive risk taking and
excessive consumption. Hence, the feedback models suggest that tech-
nical trading profits may be available even in the long run if technical
trading strategies (buy when prices rise and sell when prices fall) are
based on noise or “popular models” and not on information such as

news or fundamental factors (Shleifer and Sumers (1990)).

DISEQUILIBRIUM MODELS

Beja and Goldman (1980) introduced a simple disequilibrium model

that explained the dynamic behavior of prices in the short run. The
rationale behind their model was

“When price movements are forced by supply and demand
imbalances which may take time to clear, a nonstationary
economy must experience at least some transient moments
of disequilibrium. Observed prices will then depend not only
on the state of the environment, but also on the state of the
market.”
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The state of the economic environment represents agents’ endowments,
preferences and information generally changing with time. In the dise-
quilibrium model, therefore, the investor’s excess demand function for
a security includes two components:

i) fundamental demand which is the aggregate demand that the
auctioneer would face if at time ¢ one were to conduct a Walrasian
auction in the economys;

ii) the difference between actual excess demand and corresponding
fundamental demand.

With non-equilibrium trading, the demand should reflect the poten-
tial for direct speculation on price changes, including the price’s ad-
justment towards equilibrium. In general, this is a function of both
speculators’ average assessment of the current trend in the security’s
price and the opportunity growth rate of alternative investments in
non-equilibrium trading with comparable securities. The process of
trend estimation is adaptive because price changes include some ran-
domness. Beja and Goldman showed that when trend followers have
some market power, an increase in fundamental demand might gen-
erate oscillations, although the economy, dominated by fundamental
demand, is stable and non-oscillatory. Furthermore, increasing the
market impact of trend followers causes oscillations and makes the sys-
tem unstable. These situations imply poor signaling quality of prices.
On the other hand, they also demonstrated that moderate speculation
might improve the quality of price signal and thus accelerate the con-
vergence to equilibrium. This happens when the speculators’ response
to changes in price movements is relatively faster than the impact of
fundamental demand on price adjustment.

HERDING MODELS

Froot. et al dmjﬁ) demonstrated that herding behavior of short hori-
zon traders can lead to informational inefficiency. Their model showed
that an informed trader who wants to buy or sell in the near future
could benefit from their information only if it is subsequently em-
bedded into the price by the trades of similarly informed speculators.
Thus, short horizon traders would make profits when they can co-
ordinate their research efforts on the same information. This kind of
positive informational spillover can be so powerful that herding traders
may even analyze information that is not closely related to the asset’s
long run value. In their model, such an equilibrium is possible even in
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the condition in which prices follow a random walk and hence publicly
available information has no value in forecasting future price changes.

e AGENT-BASED MODELS
An agent-based model is a computational model for simulating the
simultaneous operations of multiple agents, in an attempt to re-create
and predict the actions of a very large group of heterogeneous arti-
ficial traders. The process wants to describe the relations between
prices and market information from the lower level (micro-structure)
of the market to the higher level (macro-structure) of the prediction
of its movements. The individual agents are presumed to be acting in
what they perceive as their own interests, such as economic benefit or

social status, and their knowledge is limited (see (@) for

an introduction).

3.2 Market predictability

Predictability is related to the possibility of generating excess returns by us-
ing past information. The sources of the predictability of stock returns are
well documented. Indeed, there are two competing points of view. The first
considers that predictability is attributed to market inefficiencies and the
second argues that predictability is the result of variation in the expected
returns driven by economic fundamentals. The rational expectations theo-
ry has as a consequence that expected stock returns should be predictable
if they are related to predetermined variables, which predict the variation
over time. (Egﬂlh argues that predictability may also reflect irra-
tional behavior of part of market participants, or should be the result of
poor statistical inference. Asset pricing models make a relation between ex-
pected returns and their sensitivity to changes in economic factors, or factor
loadings (the betas coefficients). Hence, the predictable variation of stock
returns can be attributed to the changes in the betas, in the risk premium or
in both of them. Recently, a large number of studies in the finance literature
have confirmed the evidence of the predictability of stock returns by means
of interest rates, dividend yields and a variety of macroeconomic variables
reflecting business cycle variations. [Ferson and Harveyl (|19_9_1|) explain the
evidence of the predictability by standard risk factors in a multiple beta
model. They identify the prespecified economic factors used by @m
(@) and find that risk premiums vary over the time and are higher dur-
ing recessionary periods. ‘Summers ([lf)j?ﬁ) finds that the logarithm of stock
price index can be described by a component of random walk and a com-
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ponent of stationary mean reversion. [Poterba and Summers (IMﬂ) suggest

a similar model, with an alternative hypothesis which states that investors
are irrationals. However, [Lo and MgKinlggzI (IL9_8§) reject the postulate of
random walk and mean reversion using data from US market. The most
significant variables used in studies by American scholars are past returns
of stock market, the dividend rate of a market index, the earning to price
ratio and variables of the term structure. (@) find that stock re-
turns are negatively correlated to the expected inflation and to the level

of short-term interest rates. [Keim and Stambaugh (IL%H) develop predeter-

mined variables that are able to predict expected stock and bond returns.
Fama. and French (Il%_g) show that past returns can predict 40% of future
stock returns at long horizons. [Fama and French (|L9_8_d) suggest that the
predictable variation in expected returns is rational and largely common
across security classes (stocks and bonds), thus the predictability may re-
flect changing in business conditions. Jagannathan and Wang (|19_9ﬁ) argue
that during a recession period the financial leverage of firms in relative poor
shape may increase compared to other firms. It follows that their systemat-
ic risk (stock betas) should increase. Kothari and Shanken (1997) find that
the book to market ratio have a strong ability to predict future returns.
Finally, several studies, which are based on daily and weekly data, make a
weak evidence of predictability using t-student statistics, R? and p-value.
The concept of stock returns predictability is often related to market effi-
ciency and investor rationality. |Balvers et all (IlQBﬂ) argue that predictable
movements in economy are consistent with efficient markets. Eargn' (@)
shows that stock market returns will be not predictable only if market ef-
ficiency is combined with risk neutrality. In particular, excess returns can
be predictable at an efficient stock market if investors are risk averse. The
extent to which excess returns can be predicted will depend on the presence
of a stable relation between the risk premium and predetermined variables.
In the same direction, @ (@) argues that stock market predictability on
its own would not imply stock market inefficiency and irrational behavior.
Indeed, investors’ risk aversion should also be considered.

From a practitioner point of view, due to risk aversion, investors require a
small positive expected return in risky markets. Thus, in markets in which
long positions prevail, like stock markets, this implies a positive upward
drift. In symmetric markets, where traders are as likely to be long as they
are short, like futures and foreign exchange markets, the implication is that
one would expect the price to be predictable to some degree. Furthermore,
government intervention in foreign exchange markets may even make them
more predictable. So, for theoretical reasons, one may expect that foreign
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exchange markets should be the most predictable, futures markets interme-
diate and stock markets the least predictable. The empirical evidence found
in [Park and Irwin (2004) and M) confirms this theory. However,
a buy-and-hold strategy in the stock market should make money because
stock markets are a positive sum games, whilst the same can not be said for
futures or FX markets.

3.3 Empirical tools

In practice, model selection involves some interplay between business re-
quirements and economic intuition. Business needs can be of various kinds,
including the need to build or modify a suite of models and the need to
model specific markets, market segments, or market regimes. Given a broad
business need, the starting point of the modeler will be economic intuition; a
purely data-mining approach in which the modeler probes data automatical-
ly in a search for patterns is not feasible. For example, intuition will suggest
whether to use an explanatory model, which is based on exogenous factors,
or a recursive predictive model, which makes predictions on the basis of its
own past. The process of model selection consists of four steps:

1. formulating the econometric hypothesis;
2. building the model;

3. estimating the model;

4. testing the model.

An important lesson in the theory of learning is that a key virtue for models
is simplicity. Complex models require huge amounts of data for estimation
and testing. Trade-offs always have to be made among model complexity,
explanatory power and the size of available data sets. Despite their apparent
superabundance, economic and financial data are actually scarce relative to
what is needed to estimate many kinds of models. For example, the 125000
individual possible pairwise correlations in the S&P 500 need to be reduced.
Only a tiny fraction of the potential correlation structure is revealing; the
rest is noise. If two models have roughly the same explanatory power, the
simpler model, i.e. the one with a smaller number of parameters to estimate,
is preferable.

There has been a great effort in the development of models able to capture
and predict the structure of financial time series. For a detailed survey on
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these techniques I refer to [Fabozzi et all M) In this thesis, in particular,
I focus on the applicability of econometric models and technical analysis
to forecast returns in the European and US markets. The choice of these
methods is motivated by their widely use in practice, their flexibility and
ease of interpretation.

3.3.1 Predictive return models

A number of econometric models are currently being used in equity portfolio
management to model risk and returns in a predictive environment. In
particular, a predictive return model makes conditional forecasts of expected
returns that are dependent on the present information set. Three of the
major families of this type of econometric models are regressive models,
linear autoregressive models and dynamic factor models.

® REGRESSIVE MODELS
They are generally based on linear regressions on “factors” (which are
also referred to as “predictors”). Linear regressions are simple yet
powerful statistical models. Conceptually, regressive models may be
categorized into two fundamental kinds:

i) Static regressive models, that do not make predictions about the
future. These models regress present returns on present factors.
The best known example of a static regressive model of returns
is the capital asset pricing model (CAPM). Suppose the risk-free
return is 7y and the return of the market portfolio is ry;,. The
CAPM states that each stock return r; is characterized by a con-
stant [3; such that the expected excess return of that stock (i.e.
the difference between the return of that stock and the risk-free
return) is proportional to the expected market excess return. The
proportionality constant [3; is the covariance between the stock
and the market portfolio divided by the variance of the market
portfolio and is a measure of the stock’s systematic risk.

The CAPM can also be expressed as a static linear regression in
which each stock’s excess return is regressed on the market ex-
cess return plus a noise term. Static multifactor models can also
be expressed as linear regressions. For example, the arbitrage
pricing theory model (APT) is a linear regression of each stock’s
return on a small number of factors. In general, these factors can
be interpreted as portfolios.

These regressions are not predictive because there is no time lag
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ii)

between the return and the factor. For example, in the CAPM,
the conditional expectation of each stock’s return at time ¢ is pro-
portional to the excess return of the market portfolio, which is not
known at time t. Predictions would be possible only if one could
predict the excess return of the market portfolio. If one wants to
use the CAPM or APT to build a portfolio or to compute port-
folio risk measures such as value at risk, some assumptions about
how to forecast the factor(s) is needed. The usual assumption is
that the factors, and thus the returns, are sequences of indepen-
dent and identically distributed random variables.

Note that nothing in the CAPM regression precludes from assum-
ing that the market portfolio return can be predicted. However,
should the market portfolio return be predictable, the theoretical
static CAPM relationship would have to be replaced by a dynamic
model because prices would be explosive if betas did not change.
Theoretical dynamic asset-pricing models have been developed,
but they have limited practical applicability because understand-
ing if and how changes of the model parameters actually occur
requires long time series and great experience to understand if
model coefficients are noisy and do not carry genuine informa-
tion. In practice, for portfolio management, one needs simple
models that can be estimated from the limited amount of empir-
ical data. Note, however, that dynamic models, in which both
expected returns and risk are predictable, do not contradict the
basic principles of absence of arbitrage and market efficiency.

Predictive regressive models, that regress future returns on present
and past factors to make predictions.

They have been developed in the quest for models that predict
returns. Consider a stock return r; and a number of predictors,
for example a number of company financial ratios, Fj;. A predic-
tive linear regressive model assumes that the stock return at any
given time t is a weighted average of its predictors at an earlier
time plus a constant and some error.

Predictive regressions can also be defined by regressing returns
on factors at different lags. Models of this type are called dis-
tributed lag models (DL). The advantage of these models is their
ability to capture the eventual dependence of returns not only
on factors but also on the rate of change of factors. To appreci-
ate the economic importance of DL models, suppose one wants
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to create a predictive model based on, among other factors, the
market sentiment, which is typically measured as a weighted aver-
age of analysts’ forecasts. A reasonable assumption is that stock
returns will be sensitive to the value of market sentiment but will
be even more sensitive to changes in market sentiment. Hence,
DL models will be useful in this setting.

e LINEAR AUTOREGRESSIVE MODELS
In a linear autoregressive model, a variable is regressed on its own
lagged values, that is on its own past. If the model involves only one
variable, it is called autoregressive model (AR). If more than one vari-
able is regressed contemporaneously in the model, it is called vector
autoregressive model (VAR) because the model variables are now vec-
tors, i.e. arrays of variables.
An AR model prescribes the value of a variable at time ¢ as a weighted
average of the values of the same variable at times t—1, t —2 and so on,
depending on number of lags, plus an error term. The weighting coef-
ficients are the model parameters. If the model includes p lags, then
p parameters must be estimated. Similarly, if a VAR model includes
n variables and p lags, each equation includes (up to) n x p lagged
values. Because the model has n variables (and thus n equations), it
has (up to) n? x p parameters.
A VAR model is “richer” than an AR model, in the sense that it is able
to capture cross-autocorrelations among a set of different variables, i.e.
how a variable at time t is linked to another variable at some other
time. An important question is whether these links are causal or sim-
ply correlations, but this is beyond the scope of this introduction (see
Liitkepohl (2006)). These considerations make clear that a VAR mod-
el can model only a small number of series. For example, the return
processes for the individual securities making up such aggregates as
the S&P 500 Index would result in a huge number of parameters to
estimate. For example, if one wanted to model the daily returns of
the S&P 500 with a VAR model that included two lags, the number of
parameters to estimate would be 500 x 500 x 2 = 500000 parameters.
To have at least as many data points as parameters, one would need
at least four years of data, or 1000 trading days, for each stock return
process, which is 1000 x 500 = 500000 data points. Under these con-
ditions, estimates would be extremely noisy and the estimated model,
meaningless.
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e DYNAMIC FACTOR MODELS
In general, a model in which factors follow a VAR model and returns
(or prices) are linearly regressed on these factors is a dynamic factor
model. This type of econometric models are often cointegrated models
in which factors are the common trends.
Recall that for a model to be useful, the number of parameters to
be estimated needs to be small. A dynamic factor model fulfills this
requirement by concentrating the dynamics of an aggregate (such as
the S&P 500) into a small number of dynamic factors. For example, a
modeler might identify in the S&P 500 three dynamic factors modeled
by a VAR with, say, four lags, which results in only 12 factors rather
than the initial 500.
The salient characteristic of dynamic models of stock returns and stock
prices is their ability to predict expected returns on the basis of present
and past values of the same returns plus other variables.

3.3.2 Technical analysis

Technical analysis is a forecasting method of price movements using past
prices, volumes and open interests. (@), a leading technical analyst,
provides a more specific definition:

Definition 7 (Technical analysis). “The technical approach to investment is
essentially a reflection of the idea that prices move in trends that are deter-
mined by the changing attitudes of investors toward a variety of economic,
monetary, political, and psychological forces. The art of technical analysis,
for it is an art, is to identify a trend reversal at a relatively early stage and
ride on that trend until the weight of the evidence shows or proves that the
trend has reversed.”

As explained previously, technical analysis has no value if the weak, and
therefore the semi-strong and strong form of the EMH hold, or if the mar-
ket price follows a Markov process. However, this methodology has been
extensively used among market participants, such as brokers, dealers, fund
managers, speculators and investors in the financial industry. In contrast to
the views of many practitioners, most academics are skeptical about tech-
nical analysis, basing on the efficiency paradigm. Nevertheless, in recent
decades rigorous explanations for the widespread use of technical analysis
have been developed and a growing interest in its applicability to predict

finacial time series has come out (see for example [Pruitt and White (ll&?ﬁ),
Brock et all (1992) and [Covel ).
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There are some psychological explanations of why a large number of people
have a strong belief in technical analysis:

i) representativeness, that is the attitude of people to often predict future
uncertain events by taking a short history of data and asking what
broader picture this history is representative of (see, in particular,

Tversky and Kahnemanl (1974));

i) communal reinforcement, that is a social construction in which a strong
belief is formed when a claim is repeatedly asserted by members of a
community, rather than due to the existence of empirical evidence for
the validity of the claim;

iii) selective thinking, that is the process by which one focuses on favourable
evidence in order to justify a belief, ignoring unfavourable evidence;

iv) confirmation bias, that is a cognitive bias whereby one tends to notice
and look for information that confirms one’s existing beliefs, whilst
ignoring anything that contradicts those beliefs. It is a type of selective
thinking;

v) self-deception, that is the process of misleading ourselves to accept as
true or valid what we believe to be false or invalid by ignoring evidence
of the contrary position.

Technical analysis includes a variety of forecasting techniques such as chart
analysis, pattern recognition analysis, seasonality and cycle analysis and
computerized technical trading systems. However, academic research on
technical analysis is generally limited to techniques that can be expressed in
mathematical forms, namely technical trading systems, although some re-
cent studies attempt to test visual chart patterns using pattern recognition
algorithms. A technical trading system consists of a set of trading rules that
result from parameterizations. Each trading rule generates trading signals
(long, short, or out of market) according to their parameter values. Several
popular technical trading systems are moving averages, channels and mo-
mentum oscillators.

Since [Donchian (Il%ﬂ), numerous empirical studies have tested the prof-
itability of technical trading rules in a variety of markets for the purpose
of either uncovering profitable trading rules or testing market efficiency, or
both. Most studies have concentrated on stock markets, both in the US and
outside the US, and foreign exchange markets, while a smaller number of
studies have analyzed futures markets (the interested reader may refers to
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Park and Irwin (2004)).

The literature gives rise to the following conclusions about technical analysis
applicability:

1. there is evidence in support of the usefulness of moving averages,
momentum, support and resistance and some patterns;

2. technical analysis works best on currency markets, intermediate on
futures markets, and worst on stock markets

3. chart patterns work better on stock markets than currency markets;

4. non-linear methods work best overall, this is not at all surprising
in light of the non-linearities found in the markets (see for example

5. technical analysis does not work as well as it used to: as transaction
costs decrease, available computing power increases and the number
of market participants increases, one would expect markets to become
increasingly efficient and thus it is not surprising that the efficacy of
technical analysis should diminish.
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Predicting EU Energy Industry Excess
Returns on EU Market Index via a
Constrained Genetic Algorithm

This chapter introduces an automated procedure to simultaneously select
variables and detect outliers in a dynamic linear model using information
criteria as objective functions and diagnostic tests as constraints for the
distributional properties of errors. A robust scaling method is considered to
take into account the sensitiveness of estimates to abnormal data. A genetic
algorithm is developed to these purposes. Two examples are presented where
models are designed to produce short-term forecasts for the excess returns of
the MSCI Europe Energy sector on the MSCI Europe index and a recursive
estimation-window is used to shed light on their predictability performances.
In the first application the data-set is obtained by a reduction procedure
from a very large number of leading macro indicators and financial variables
stacked at various lags, while in the second the complete set of 1-month
lagged variables is considered. Results show a promising capability to predict
excess sector returns through the selection, using the proposed methodology,
of most valuable predictors.

4.1 Introduction

Studies in variable selection have mainly followed two directions: the devel-
opment of stepwise algorithms (see M@ (M)) and Monte Carlo-based
Bayesian procedures (George and McCullochl (1993, 1997)), but these tech-
niques tend to become impractical with more than 25 variables. Up to about
ten years ago, in academic works on macroeconomic modeling and economic
forecasting, this was usually not a serious limitation, because variables on
which researchers focused were in a handful number, e.g. the fifteen ma-
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jor macroeconomic aggregates measures. Recently there has been growing
attention to the problem of managing financial data-sets with thousands of
potentially relevant time series to meet the need of practitioners that use
such a number of variables when making their economic valuations. Com-
putationally straightforward solutions have been proposed in literature. A
possibility is to consider forecast pooling that entails the combination of
two or more models with a different set of predictors to produce a single
combined forecast (the interested reader may see Stock and Watsonl (2006)
for a detailed review). An empirical comparison of different methods from
the extant literature for combining the forecasts generated by the individual
autoregressive distributed lag models to predict monthly US employment
growth in the presence of many potentially relevant predictors is conducted
by [Rapach and Strauss ). In the same direction, an algorithm-based
procedure to increase the efficiency of forecasting combining methods is pro-
vided by (Costantini and Pappalardd (2008), where the [Harvey et all (1998)
encompassing test is used to compare all forecasting models and eliminate
those that are encompassed by others. The robustness of this methodology
is assessed through an empirical application to Italian monthly industrial
production using ISAE short-term forecasting models. From another per-
spective, Grenouilleatt (IZOM, M) introduces the sorted leading indicators
dynamic factor model, an approximate method based on the extraction of
principal components from a data-set of thousands of series.

Hendry and his colleagues at the London School of Economics have in-
stead developed the econometric methodology of general-to-specific mod-
eling, where the modeler simplifies an initially general equation that ade-
quately characterizes the empirical evidence w1th1n his or her theoretical
framework (the interested reader may refer to |Gilbert (@ and Cam-
pos et al. (2005a) for a detailed description). Emplrlcal applications of
this approach including numerous countries and different sectors of the

economy can be found, for example, in |Hﬁndr;z| dl%&i), Ahumadal (1985

MacDonald and Taylog (1992) and Campos and Ericsson (1999).
(@) exposits the main aspects of general-to-specific modelling, illustrating
throughout with the modeling of U.K. consumers’ expenditure.
(@) illustrates various features of the evolving general-to-specific method-

ology, such as empirical implementation of the theories of reduction and en-
compassing as a tool for assessing alternative models of Argentina’s balance

of trade. MacDonald and Taylol (I_L‘l&j model U.S. real money demand

with an ADL, where cointegration is determined in a VAR scheme by the

Johansen procedure. Dmms_amd_Emgss&ﬂ d19_9ﬂ illustrate constructive

data mining by modelling Venezuela consumers’ expenditure. For a more

68




4.1. INTRODUCTION

comprehensive overview, I refer to|Campos et all M)

A third choice is to define automated model specification searches by genetic
algorithms and use information criteria as the objective function to mini-
mize. A genetic algorithm (henceforth GA) is a stochastic procedure that
uses the biological paradigm of evolution to solve optimization problems and
is usually applied in complex systems with great dimensions and several con-
straints. Applications in social and economical fields can be found in
) and [Dorsey and Mayer (1995). Their use in econometric problems
of model selection has been recently considered by Balcombd dﬂﬂ and
Hasheminia and Niaki (|21)D_d In general, the algorithm operates on a set of
randomly generated potential solutions, called chromosomes, applying the
concept of survival of the fittest to produce better and better approximations
of the best solution via cycles of differential replication, recombination and
mutation (for a more detailed description of genetic algorithms one can refer
to|Goldberg (1989) and Michalewitz (1994)). This plan is called simple GA.
The literature holds many different versions of GA to constraint handling in
evolutionary optimization. A common approach is to apply a penalty func-
tion to bias the search toward a feasible solution (for a detailed treatment
of the penalty function methods one can see Smith and Coiti (1997) and
Runarsson and Yad (2002)), another possibility is to treat the constrained
optimization problem as a multiobjective where each of the objective func-
tion and constraint violations is a separate target to be minimized (see for
instance [Det (@))
In this chapter I will develop a GA-based procedure capable to take into
account the subjective opinions of decision maker on the quality of the so-
lution in a variable section context with the simultaneous and consistent
detection of outliers under statistical constraints on errors. Diagnostic tests
will be represented as constraints and the bias penalty function method will
be used to search the best model in terms of the information criteria. The
choice of the penalized method is motivated by the fact that it is able to
balance in a more flexible and natural manner the objective function and
constraints violations.
Compared to other GA algorithms presented so far, the pro osed GA will
improve the optimization plan suggested by , preserving
its simple structure. From the financial point of view, the contrlbution of
this chapter is the employment of the procedure in two examples to predict
the excess return of the MSCI Europe Energy sector over the MSCI Europe
index. The novelties mainly stay in the choice of the dependent variable on
one hand, in fact excess returns are usually defined for stocks and bonds
and not for aggregate or industrial indexes, and on the other hand, the use
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of a data-set of hundreds of predictors provides the opportunity to exploit
a much richer base of information then is conventionally used for financial
time series forecasting.

The remainder of the chapter is organized as follow. Section II gives a brief
overview of the econometrical and mathematical methodologies used and
illustrates the employed algorithm and the proposed automated procedure.
Section III describes the data set and Section IV presents the experimental
results and discussions. Two different problems associated with variable se-
lection in a large data base are studied to relate the findings to the recent
literature on model uncertainty in a predictability context. Finally, Section
V concludes the chapter with a summary and some remarks.

4.2 Automated model selection using GAs and diag-
nostic tests

The problem of variable selection in model construction is often tackled by
following a defined plan of action, imposing restrictions sequentially and
testing down results. The difficulties to automate this procedure are mainly
of two types: the first is considering not rigid levels of significance for all
tests and the second is describing a parsimonious and flexible structure for
the decision tree, yet able to represent satisfactorily the judgemental crite-
ria. The search may be exhaustive for small model spaces or may involve
a stepwise algorithm that combine backward elimination and forward selec-
tion for larger spaces (in the order of ten variables). But these procedures
become impractical and computationally inefficient when the size of model
space increases, because its rate of growth is exponential with the number
of regressors (i.e. for m regressors there are 2™ models to evaluate). To
overcome this limit, the Bayesian approach uses Monte Carlo Markov Chain
algorithms to explore the posterior model probabilities and to average the
most likely ones. This methodology has been applied to stock return pre-
dictability by |[Avramov (2002) and (Cremers (2002). Another solution is
to consider an automated information criterion based search that ranks all
meaningful models and to define the solution being the best model in the
rank. [Balcombe (IM) followed this way and proposed the use of genetic
algorithms to detect the solutions as those models with the minimum value
of a given information criterion.
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4.2.1 Dynamic linear models and outlier detection

In financial literature the commonly used model to predict stock returns
is a dynamic linear one because it highlights the leading relations among
variables and helps the interpretation of parameter estimates in forecast-
ing (see for example [Pesaran and Timmermann (1993) and Bossaerts and
Hillion (1999)). I adopt this functional form in this work. Letting m be
the number of predictors including the constant term, and n the number of
observations, the model in vector form is

y=X"B+e¢

where y is the variable that is being predicted, X* is the n x m matrix of pre-
selected explanatory variables from the complete database X of size n x M,
with M > m, e = (e1,...,&y) is the associated n-vector of residuals and
is the m-vector of regression coefficients. I assume models have to satisfy the
following usual assumptions in regression analysis (see Pesaran and Pesaran
(1997, p. 71-73)):

1. low degree of collinearity for regressors;
2. homoscedasticity, non-serial correlation and normality of residuals.

The first condition expresses the structure of interrelations among predictors
and the last condition specifies the error distributional properties, i.e. & ~
N(0,02%1,). A specific problem of variable selection methods is that they
are sensitive to outliers. These abnormal observations are typically modeled
by either a shift in mean, as in Ewﬂ (I_M or via a shift in variance,
as in |H£E_‘ung£_‘uzﬂ (IlBB_d) I consider the mean-slippage model to identify
outliers in the set of errors and consequently transform e to ¢* = (e7,...,¢}),
where

. { &) if i =0

k €+ Vi f i #0

and 7 represents the n-vector of shifts, assuming k£ outliers, so that £* ~
N (4, 0%1,) and equation (EI]) becomes

y=X"G+¢"

In multiple outlier detection there are two related problems, known as mask-
ing and smearing. Masking means that an outlier prevents another one from
being identified, while smearing means that one outlier makes another obser-
vation, which is not an outlier at all, to appear as an outlier. These features
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emerge malnly in sequential detection procedures as it was pointed out by

i ). The simplest way to identify multiple outliers in
a consistent manner would be to consider all possible permutations of the
observations into two groups, non-outlier and outlier data, and decide which
of them is the best combination based on some criterion. An example of this
approach is |E¥lenf;u| 419_92), who used information criteria. But similar to
the case of variable selection, this approach becomes rather impracticable
as n has size greater than 30. Since some combinations of data are more
likely to form the outlier set and, in the same manner, some combinations
of variables fit better the model, |H@ngml.| (Il&‘)ﬂ) proposed a two step
Bayesian method to identify outliers and predictors simultaneously. In the
first step of the procedure a set of potential outliers is identified through
a robust technique and successively a Monte Carlo algorithm considers all
possible subsets of models and potential outliers. A procedure based on
genetic algorithms to select outliers and more 1nf0rmat1ve variables togeth-
er in linear regression models is described in (@ the elements of
the search space are m + n-vectors, where the ﬁrst m coordinates represent
the m predictors and the last n coordinates take into account the presence
of outliers among observations. This approach constitutes an appealing al-
ternative to Bayesian methodologies when data-set is in the order of 40-50
observations and 10-12 predictors, but for larger data-sets it is affected by
the same computational problems.

Robust scaling

In this chapter scaling is applied to provide information about the location
of outliers in the n-vector of residuals. There are two types of scaling: auto
and robust scaling. For the sequence of errors € = {&;}}"_;, the auto scaling
produces

€t — €mean

ag

Zt =

where €p0an 1S the mean of the errors and o is their standard deviation. If
errors are normally distributed, the probability that |z;| > 3 is about 0.27%.
The “36 edit rule” indicates as an outlier every residual e; such that |z;| > 3.
As pointed out in |Chiang et all (IM), in the presence of multiple outliers,
this rule can perform poorly for its sensitiveness to outliers on the mean
and standard deviation. In the context of model selection in particular,

|H£E‘Jing_€m_aﬂ (IlBB_d) used Huber’s robust scaling to overcome this problem.

The idea is to replace mean with median and standard deviation with median
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absolute deviation from median (MAD) as follows
omap = Kmedian{|e; — emedian|}

where epedian 18 the median of {e;}}; and the constant K = 1.4826 is re-
quired to make MAD an unbiased estimate of the standard deviation for
normally distributed data. Huber’s scaling is resistant to multiple outliers
compared to auto scaling but may not be robust enough to detect all abnor-
mal data; moreover, it takes a symmetric view on the variance which may
be ineffective for asymmetric distributions. To reduce the effect of outliers
on the estimates of mean and standard deviation for normal data, under
the hypothesis that errors have considerably less than 50% outliers, I adopt

the consistent modified scaling suggested by |Chiang et all (lZDD_j) First, the
distance between each residual ¢; and the median is computed

€t = ‘Et - Emcdian‘

and sorted in ascending order. Then, letting emean the mean of {e;}} ,, the
fourth order standard deviation

1 jH+n/2—1 1/4 "
o4(j) = Ry ; (e — emean)" | i=l.. 5+l

is determined because it is more sensitive to outliers than the standard devi-
ation. When j increases, o4(j) increases too, in a gradual manner when out-
liers are not reached and rapidly when they are included in the calculation.
The ratio between two consecutive o4 is computed

o4(j+1)

r(j) = 1)

and the first difference r(j+1) —r(j) is maximized to disclose better normal
errors from outliers. Successively the mean and standard deviation of the
former data are used to autoscale {e;}}" ; and to apply the 3¢ edit rule.

4.2.2 Information Criteria

The most popular selection criteria and evaluation procedures are expressed
through a penalized log-likelihood to take a compromise between a mea-
sure of in-sample fit versus a measure of model complexity (see for instance
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(M)) When models are affected by multiple outliers, this unified

expression may be written as

—2log Ly, i, + 2g9(n, m + k)

where L,, ;, denotes the maximum likelihood with m parameters and £ out-
liers and g(n,m + k) is a penalty function depending on the sample size n
and on m + k. I simplify the probabilistic structure of outliers with suitable
economic assumptions by considering as outliers singular observations that
emerge from different and separated distributions every time. In this way I

can write the maximum likelihood for model ([@2) likewise Pynnénen (1992),
log Ly, 1, = —g(ln 2+ 1) — glog o7 +log(n — k)!

where 3,% is the estimate of the residual variance. The penalty function in
the Akaike’s information criterion (AIC, (@)) becomes g(n,m +
k) = m + k, and in Schwartz’s Bayesian criterion (BIC, Schwar] )) is
gn,m + k) = (m + k)log(n). Models selected by AIC often result over-
parameterized or even misspecified; on the other hand, BIC-based models
are consistent only when the true model in included in the search space.
This assumption is rarely fulfilled in practice and what one can hope for
is a model that provides a useful approximation to the data generation
process. In order to select parsimonious proxies, a desirable property of
BIC is that 8 or more included parameters should have a higher penalty.
However none of these criteria is able to penalize the correlation structure
among predictors. Conversely, Bozdogan’s information complexity criterion
(ICOMP, Bozdogan (IL%S, Izomj)) is specifically designed to be resistant to
misspecification and penalizes interdependence between parameter estimates
and over-parameterization. For a linear model with m predictors and k
outliers it is

gn,m+k) = B mak §1n(‘§model’)

m+k In <tr(2model)> N 1
where imodel represents the estimated covariance matrix of the parameter
vector and tr(-) denotes the trace of a matrix.

A first purpose of this work is to compare the three criteria in the linear
modeling context.

4.2.3 Proposed genetic algorithm

In this chapter I develop an automated procedure based on Balcombe’s that
is able to rank models via information criteria, detect multiple outliers and
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Constraint Condition Test
g1(x) homoskedasticity of residuals Breush-Pagan test
g2(x) serial correlation of residuals ~Durbin-Watson test

Tabella 4.1: Diagnostic tests adopted as constraints

consider diagnostic restrictions.
The joint problem of variable selection and multiple outlier detection time
can be formulated in the context of evolutionary programming. Unlike

), who parameterized in the same chromosome predictors and outliers,
I consider only the combinations of independent variables forming every
regression model as chromosome while outliers are designed specifically for
each chromosome and are identified by the consistent modified scaling of
residuals. Following Balcombd (M), each chromosome is represented with
a binary m-vector, in which 1 at position ¢ means that variable i is in
the model, conversely, 0 at the same position means that variable 7 is out
of the model, for i = 1,...,m. To compare the different chromosomes
AIC, BIC and ICOMP are used and to concern the regularity conditions
of residuals in model (£2)) classical diagnostic tests are considered (see for
example Kaboudan (2000)) and are displayed in table @Il In this way the
constrained optimization problem of finding the best model in terms of a
given information criterion under a defined underlying distribution of the
residuals can be written as

minimize f(x), X = (21,...,2y) € {0,1}""

where f(x) is the objective function, x € SNF, S C {0,1}" defines the
search space which is an m-dimensional space and F is the feasible region
defined by

F={xe{0,1}"|gr(x) <0,k =1,2}

where gi(x) < 0, k = 1,2 are the constraints derived from the statistical
tests. The constraint associated to Durbin-Watson’s test has been reduced
to a inequality constraint by imposing |2 — DW(x)| < §, where DWW (x)
is the Durbin-Watson’s test statistic for model x and ¢§ is a small positive
number that indicates the degree of violation.

I have used the penalty function method to transform problem (EGHAT)
into a non-constrained one. The basis for this method is to define the new
objective function

P(x) = f(x) + re (x)
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where ¢(x) is the penalty function built on the constraints and {r.}.=o, .c
is a sequence of penalty coefficients, with the subscript ¢ indicating the gen-
eration counter and C' is the total number of generations. For minimization
problems, the main point is to choose the penalty function to make sure that
it is zero for all feasible points and is “high” for all non-feasible points. Then
the (unconstrained) minimization of 1(x) is equivalent to the (constrained)
minimization of f(x). To this end, I fix 7. = 2 for all generations to equally
weight information criteria and penalties, and define

P(x) = Md1(x) + Aa2(x)

where \; is the relative importance given by the decision maker to the
constraint gx(x) for k£ = 1,2 and penalties are

$1(%) = Ipy<ary(x) (1 —p1)log Ly k(x)
$2(x) = L2 DW|>as.}Ulpa<an,} (X)(1 — p2) log Ly, k(x)

where 14(x) is the indicator function, and «’s and p’s are the significance
levels and p-values for tests respectively. From the diagnostic point of view,
these expressions are sufficiently flexible to account for the null hypothesis of
each test, its p-value pi and its significance level ay. From the evolutionary
programming perspective, since the space of possible models may be disjoint
under constraints, the form of these penalties allow to explore infeasible
regions, that acts as bridges connecting the feasible regions and avoid to
find solutions of poor quality.

The optimization algorithm consists of the following steps (Fig. E.1):

Step 1. Select the information criterion to be the fitness function f(x).
Input historical data for the financial variables.

Step 2. Initialize the vector of significance levels «, the vector of relative
importance of constraints A and the weight r. of penalty function with
respect to log-likelihood.

Step 3. Define the population size and randomly generate set of binary
m-vectors of chromosomes (models).

Step 4. Study statistical and fitness properties of chromosomes:

a) detect outliers in each chromosome via the consistent modified
scaling of data and the “30 edit rule”;

b) evaluate the penalized fitness function for the consistent models
at step 3.
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Step 5. Select the solutions giving the minimum value of penalized fitness
function. Compare the value of the objective function for this newly
selected solutions with the value of the objective function found for
the formerly selected solutions (that was determined in the previous
iteration). The solutions with the minimum value of objective function
is selected to form the next generation.

Step 6 Test the number of the current GA iteration. If the maximum
iterations number has not been reached, go to step 7, otherwise go to
step 8.

Step 7 Apply GA operators (selection, crossover and mutation) to change
the states of the chromosomes. Proceed to step 3.

Step 8 Find the best solution in terms of the information criterion and the
constraints. If it is not satisfactory return to step 2 otherwise end the
processing.

As suggested in Balcombd (IMH), one can run several independent trials of
the procedure to obtain a pool of candidates among which operate the choice
and to have an indication of the goodness of predictors and successively
implement once again the genetic algorithm with the solutions of the trials
as initial population to identify the best combinations of predictors.

All the algorithms for this procedure were programmed using MATLAB,
version R2007b.

4.3 The data

The set of financial variables has been provided by Generali Investments
and consists of 63 explanatory variables measured monthly over the period
February 1995 — March 2007 (146 observations). Based on a review of the
literature (see |Pesaran and Timmerman (IL%H, mOﬂ) and Bossaerts and
Hillion (1999)), data have been classified into five categories: financial con-
ditions, global economy, inflation, revision and technical. In an effort to
use stationary variables and to highlight more relations with excess returns
over time, I have generated three variations of log-levels for every regressor
(changes in 1, 3 and 6 months). Exceptions are data from the revision and
technical categories, for which I have adopted a moving average, recently
introduced by |Leontitsis and Pangé (IM), to decrease the impact of his-
torical data revision and have a better trade-off between smoothness and
accuracy. I measure the predictability of the 1-month excess returns of the
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( Start
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Select IC and input
historical data
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Input significance
levels and relative
importance

|
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Generate randomly initial
population of
chromosomes Is e best
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* satisfactory?

Detect outliers via
consistent modified
scaling and "38 rule”

* End /]

Evaluate penalized fitness
function

Y

Select and save models
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of penalized fitness
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number of

iterations
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Apply GA operators
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Figura 4.1: Flowchart of the constrained GA-based variable selection and
multiple outlier detection algorithm
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European Energy sector, defined as r, = log(S;/S;—1) —log(P;/P;—1), where
Sy is the price of MSCI European Energy industry and P, is the price of
MSCI European index with this transformed and augumented data-set of
457 variables. Only data available when a forecast is made are used, and
when there is a time lag before a data is announced I use the data from the
last obtainable period. I study the effectiveness of the methodology by di-
viding observations into two subperiods, as in Bossaerts and Hillionl (1 ):
the former provides the estimation sample and corresponds to 80% of the
observations, the latter subperiod covers the remaining data and represents
the testing sample.

4.3.1 In-sample fitting accuracy measure

The fitting abilities of information criteria to select models in the in-sample
tranche are tested with the R? adjusted, corrected for the presence of k
outliers, that can be presented as below

 RSS/(n—(m+k)

2 _
Ragjp =1 TSS/(n —1)

where RSS is the regression sum of squares (explained deviation) and 7'S.S
is total sum of squares (total deviation), both adjusted by their respective
degrees of freedom and outliers are handled like independent variables.

4.3.2 Out-of-sample forecasting accuracy measures

I construct out-of-sample forecasts of excess returns using the following
recursive approach:

i) the in-sample loadings on the predictive variables suggested by each
criterium are used to form the expected excess return forecasts in
recursive, step-ahead, out-of-sample periods;

ii) T then expand forward the in-sample end date by one month, reesti-
mate the model and obtain a forecast for the next period. I repeat
this process until the end of the out-of-sample period.

The forecasting abilities of models selected by information criteria are then
analyzed by five measures commonly used in the forecast performance liter-
ature (see [Dunis and Williams (IM) and references therein for a complete
review): mean error (ME), root mean square error (RMSE), mean abso-
lute error (MAE), Theil’s inequality coefficient (U) and correct directional
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Performance measure Description
Mean error ME = % Zle(ﬁ —Tt)

Root mean square error RMSE = \/ :lp Zle (ry — ﬂ)z
Mean absolute error MAE = % z;[:l |re — 7

_ rShieeRy
\/% S (re—ri—1)?

Correct directional change ~ CDC = 1% Z;le Dy

Theil’s inequality coefficient U

where Dy =1 if ;7 > 0 else D; =0

r¢ is the observed excess return at time ¢
7 is the forecasted excess return at time ¢
T is the size of the forecast period

Tabella 4.2: Statistical forecasting accuracy measures

change (CDC), where forecast error is defined as the observed excess return
r; less the forecast 7; at time t. Table presents the measures. A positive
ME indicates that the forecasts are on average too under-estimated and a
negative ME indicates that they are on average over-estimated. The RMSE
is computed by taking the square root of the average squared errors and it
penalizes large forecast errors relative to smaller ones. The MAE is the av-
erage of the forecast errors disregarding their signs. Unlike RMSE and MAE
that are scale-dependent measures, U is defined as the ratio between RMSE
of the proposed forecasting model and RMSE of a benchmark, in this case
the naive model, which assumes that the previous observation is the best
predictor of the feature, and results in forecast error estimates independent
of the scale of the variables: a value less than one indicates that the forecast
is more accurate than the naive alternative. CDC measures the capacity of
a model to correctly predict the change of a forecast variable and becomes
an important issue in trading strategies that rely on the direction of the
forecast rather than its levels.
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4.4 Empirical results

In this section I give two examples to demonstrate the practical utility of the
proposed methodology in variable selection. In the first application I study
the problem of building a model with the best combination of predictors
among a preselected pool of informative variables, assuming the true model
is in this reduced space. In the second application I analyze the problem of
giving a useful approximation to the data generation process from the data-
set of all variables lagged 1-month. In addition, the examples are conducted
comparing the proposed GA and the simple GA, developed on the plan
described in Balcombd (2005).

4.4.1 Example 1

The subset of predictors has been obtained by analyzing correlations of
each variable with sector excess returns and selecting the series yielding the
highest correlation coefficients at a 5% significance level in the in-sample
period with attention to the consistency of their signs with economic theory.
The reduced data-set is displayed in Table and is constituted by 16
time series from May 1996 to March 2007 for a total of 131 observations,
divided in the estimation period that goes from May 1996 to December 2004
(104 observations) and the testing period that goes from January 1997 to
March 2007 (27 observations). Transformations of each predictor and their
correlations with excess returns are reported in Table[4.4] where it is possible
to note that all the correlations are quite low. At the same time a second set
of potential predictors has been added including variables that are specific of
the Energy sector (i.e. the price of brent, 12-month-forward pro-rata total
number of earning per share (EPS) estimates of all companies in Energy
sector and weighted 12-month-forward growth in EPS of Energy sector)
and US indicators that may condition or lead European market (i.e. US
inflation and historical EPS growth of S&P 500 index). As Table[dlreveals,
there is low correlation among predictors, except between price/book ratios
(67%), European CPI with US CPI (45%), European CPI and 12-month-
forward of EPS estimates of Energy sector (43%). Another interesting link
is between the 3-month EURIBOR. and the momentum associated to Europe
governments bonds (-45%).

The space of possible linear regression models from a set of 16 predictors
and the constant term counts more than 65000 elements, without consider-
ing the restrictions in Table 1] and the presence of outliers. The proposed
GA and the simple GA have been tested by implementing 30 independent
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Category

Mnemonic

Variable

financial

global economy

inflation

revision and technical

T

T2

T3
Ty

Zs
L6

T

T8
L9
Z10

11
€12

r13
L14
Z15
L16

EU DS. MARKET DIVIDEND YIELD — BD DISCOUNT RATE / SHORT
TERM EURO REPO RATE (MTH. AVG)

EU DS. MARKET DIVIDEND YIELD - GERMANY BENCHMARK

BOND 10 YR (DS) RED. YIELD

EURO RATE 3-month (DS synthetic) offered rate

BD BENCHMARK 10 YR DS GOVT INDEX RED. YIELD - BD BENCHMARK
5 YR DS GOVT INDEX RED. YIELD

GERMANY BENCHMARK BOND 10 YR (DS) RED. YIELD

LEHMAN US CREDIT BOND INDEX RED. YIELD - LEHMAN US AGG.
GOVERNMENT RED. YIELD

EC CONSUMER CONFIDENCE INDICATOR
EUROPEAN AGGREGATE (DISC.) SADJ

S&P 500 INDEX HIST. EPS GROWTH

GSCI PRECIOUS METAL SPOT PRICE INDEX
Crude oil-brent dated FOB U$/BBL

EM CPI ALL ITEMS (HARMONISED) NADJ
US CPI ALL ITEMS LESS FOOD & ENERGY (CORE) NADJ

MSCI EURP OIL & GAS 12 MTH FWD YOY GROWTH
MSCI Eurp Oil & Gas REVISION

MSCI EMU PRICE / BOOK RATIO

MSCI EUROPE OIL, GAS & C. FUEL PRICE / BOOK RATIO

Tabella 4.3: Data sorted by category for Example 1
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€8

Mnemonic Transform Lag Correlation p-value

I Al 1 0.19 0.06
T2 Al 3 -0.16 0.10
I3 Al 3 -0.23 0.02
T4 Ag 3 0.20 0.04
x5 As 6 -0.19 0.05
L6 Aﬁ 6 0.23 0.02
xT7 Al 1 0.16 0.10
T8 Al 6 0.20 0.04
Zg As 6 0.22 0.02
Z10 Ay 1 0.12 0.221
11 Ag 1 0.23 0.02
T12 AG 3 0.24 0.01
z13 WSMA(3,-0.4,2) 6 0.15 0.13f
T14 WSMA(3,-0.4,2) 6 0.06 0.54"
T15 Aﬁ 6 -0.16 0.10
T16 Ag 6 -0.18 0.08

Tabella 4.4: Correlation between transformed predictors and excess returns in the in-sample period for Example
1

Note. The second column reports the transformation associated with each variable, for the predictor z;, Ay is
the difference x;; — x;,—r and WSMA(3,-0.4,2) is the Weighted and Simple Moving Average with 3, -0.4 and 2
parameters. Predictors lags are displayed in the third column. In the fourth and fifth columns are reported the
correlation of each predictor with excess returns and its significance in the in-sample period respectively. A T
superscript denotes variables that have low statistical significance in the estimation period but that are considered
of deep economic interest for the Energy sector in the forecasting period.
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T2 z3 Ty Zs Te x7 zg Tg T10 T11 Z12 Z13 T14 T15 T16
ry -0.14 -0.03 0.12 -0.02 0.02 0.02 -0.06 0.06 0.01 -0.01 -0.08 -0.15 -0.16 0.10 -0.01
T2 0.18 -0.07r -0.09 -0.13 -0.03 0.09 0.08 0.08 -0.01 -0.18 -0.04 -0.01 -0.05 -0.06
T3 -0.45 033 -0.14 -0.19 0.19 0.08 -0.09 0.05 0.08 028 021 034 0.36
T4 -0.13  0.18 0.12 -0.08 0.02 0.05 0 0.01 -0.22 -0.17 -0.46 -0.22
5 -0.19 -0.23 0.08 0.14 -0.08 -0.12 0 -0.02 0.19 022 0.32
Te 0.01 -0.12 0.14 0.04 0.05 0.16 -0.14 0.09 -0.43 -0.33
T7 -0.07r 0.18 -0.03 0.12 0.09 -0.06 -0.10 -0.11 -0.26
Ty 0.03 023 0.04 019 022 013 022 0.23
Tg 0.02 024 012 024 -0.15 -0.07 -0.20
10 0.18 -0.01 0.01 0 0.01 o0.01
T11 0.45 043 0.08 -0.24 -0.24
T12 0.27 024 0.03 -0.05
13 0.07 0 0.06
T14 0.26 0.30
I15 0.67

Tabella 4.5: Correlation structure of predictors in the estimation period for data considered in Example 1
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trials with a population of 100 individuals and 200 generations for each cri-
terium. The suitable forecasting models selected by information criteria for
the optimization schemes are depicted in Table The findings of imple-
mentations are reported in Table L7l In general, for the in-sample period,
models produced by the proposed GA have a better performance in terms of
adjusted R? and diagnostic tests, whereas in the out-of-sample period, they
behave in a manner similar to those suggested by the simple GA, unless for
CDC, for which the simple GA offers more accurate valuations. Analyzing
more accurately the results of the proposed GA, all selected models have
an outlier corresponding to January 1999; the BIC-based model results to
be the smallest one, with only four independent variables, the biggest one
is the ICOMP solution, with 10 predictors and AIC suggest a model with
7 indicators. As noted from Table [8], their errors pass the constraints on
the distributional form, they are normally distributed at a significance level
of 1% for the Jarque-Bera’s test, so the associated penalties are zero. Com-
paring in-sample results, BIC and ICOMP behave in a similar manner, with
Rid]-71 = 0.41, AIC performs quite better, with Rgdﬂ = 0.46. In the out-
of-sample period, the suggested models have a negative ME, indicating a
general over-estimate of forecasts. In particular, by considering also RMSE
and MAE, for which the optima reach the same values, 0.04 and 0.03 respec-
tively, the best choice is that proposed by AIC, because has the minimum
ME (-0.0019). Conversely, Theil’s U measure indicates BIC-based model as
the best choice with respect to the naive model. From CDC point of view,
ICOMP-based model reaches the best performance with 67% of correctly
predicted direction changes against only the 48% of BIC and 44% of AIC.

4.4.2 Example 2

The data-set, formed by all variables and their transformations lagged 1-
month is considered now, for a total of 150 possible predictors, divided as
follow: 72 are financial indicators, 54 describe global economy, 5 are inflation
indexes, 1 represents revision for the Energy sector, defined as the ratio of
the difference between 12-month-forward number of EPS estimates up with
12-month-forward number of EPS estimates down and the total number of
12-month-forward EPS estimates, and 18 measures are aggregate earnings
for European market and sector. Each predictor has 136 observations, from
December 1996 to March 2007, divided into two groups: from December
1996 to November 2004 (108 observations), that represents the estimation
period and from December 1996 to March 2007 (26 observations), that con-
situes the testing period.
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simple GA Proposed GA
AIC BIC ICOMP AIC BIC ICOMP

—
)
—_
—
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Tabella 4.6: Model choices over the estimation period with respect to the
three selection criteria for the simple and the proposed GA in Example 1

Selection Criteria

Criterium  variables dummies AIC BIC ICOMP
simple GA
AIC 7 - —-345.4 -324.2 -351.4
BIC 4 - -340.1 —-326.9 -345.3
ICOMP 8 - -338.1 -314.3 —-360.3
proposed GA
AIC 7 1 —1118.6 -1092.2 -1119.8
BIC 4 1 -1113.8 —-1095.3 -1118.1
ICOMP 10 1 -1105.5 -1068.5 —1135.1

Tabella 4.7: Characteristics of the solutions and values attained by the
information criteria, applying the simple and proposed GA respectively, in
Example 1
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Diagnostic tests
Criterium Breush-Pagan Durbin-Watson Jarque-Bera
statistic p-value statistic p-value statistic p-value

simple GA

AIC 11.1375  0.9158 2.2832 0.3127 35.3647 < 0.001
BIC 8.9344  0.9698  2.3225  0.1643 18.5842  0.0040
1ICOMP 32.9518 1 2.3883 0.1592  22.1262  0.0026
proposed GA

AIC 12,9561 0.9268  2.0630  0.8987  3.2037  0.1299
BIC 6.8379  0.8553  1.9407 0.6031  3.1944  0.1306
ICOMP 23.3492  0.9842  2.0479  0.5941  3.1572  0.1334

Tabella 4.8: Diagnostic tests for models selected by information criteria with
the simple and the proposed GA in Example 1

Fit measure Forecast measures

Criterium Rgdj & ME RMSE MAE U CDC
simple GA
AIC 0.2491 -0.0150  0.0393 0.0296 0.7849 70%
BIC 0.1883 -0.0082 0.0376 0.0283 0.7499 48%
ICOMP 0.2013 -0.0127 0.0394 0.0299 0.7862 70%
proposed GA
AIC 0.4576 -0.0019 0.0379 0.0295 0.7568 44%
BIC 0.4124 -0.0047 0.0354 0.0288 0.7072 48%
ICOMP 0.4108 -0.0136  0.0383 0.0288 0.7639 67%

Tabella 4.9: In-sample fitting and out-of-sample forecasting results of the
Energy excess returns obtained by the simple and the proposed GA in
Example 1
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I undertake the problem of giving an approximation to the excess return
process with one variable per category, for a total of five predictors. This
choice may not be the best in prediction terms, but it allows to identify the
determinants of movements of excess returns in each economic category.
Because the resultant space is very large (there are about 350.000 possible
configurations), with multiple optima and disjointed regions, a reasonable
way to tackle this search is to seek a local optimum via more chromosomes
and generations than the previous example. Following this approach, I de-
fined 100 simulations of the proposed GA and the simple GA respectively,
with 50 chromosomes for 200 generations, then a new implementation of each
procedure, where the starting population is constituted by the previous 100
solutions, is done. Final models are reported in Table .10} comparing the
results relative to the two plans, one can conclude that models suggested
by the proposed algorithm are better even if forecast accuracies are similar
because they satisfy more appropriately fit measure and diagnostic tests. In
particular, focusing on the choices made by the proposed GA, the first two
criteria have suggested the same model whereas the ICOMP-based choice
differs from the previous one only for the financial component by considering
German bond business expectations in place of the momentum variable (the
difference between the dividend yield of European market and European
BDP rate). All the solutions have an outlier in correspondence of January
1999, pass the diagnostic tests and present similar values for AIC and BIC
(see Tables [L.11] and [412]). The only real difference is in ICOMP criterium:
the first model reaches —1161.4 and the second —1171.3, suggesting a more
complex correlation structure among predictors in the first regression. This
is much more evident if one considers the complexity measure in (L), for
which the values are 5.14 and -0.48 respectively. In the estimation and in
the testing periods they behave in a similar manner as displayed in Table
4T3l with a major capability to capture the forecast movements of excess
returns for the ICOMP-based choice, equal to 61% with respect to the 54%
of the other model.

4.5 Conclusions

In this chapter, I developed a new automated model search based on infor-
mation criteria and genetic algorithms to produce linear dynamic models
satisfying usual diagnostic constraints on errors. The penalized function ap-
proach was used to represent statistical tests and model performances like a
constrained evolutionary optimization problem. At the same time a multiple
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Criterium Variable Transform
simple GA
AIC & BIC

EU DS. MARKET DIVIDEND YIELD - BD DISCOUNT RATE / SHORT TERM Aq

GERMAN MARK TO US $ (GTIS) - EXCHANGE RATE Ag

EM CPI ALL ITEMS (HARMONISED) NADJ Ag

MSCI Eurp Oil & Gas REVISION WSMA(3,-0.4,2)

MSCI EUROPE - CAL FY0 WTD EPS Aq
ICOMP

BD INDUSTRIAL PRODUCTION INCLUDING CONSTRUCTION VOLA Aq

GSCI Industrial Metals Spot - PRICE INDEX Ay

EM CPI ALL ITEMS (HARMONISED) NADJ Ag

MSCI Eurp Oil & Gas REVISION WSMA(3,-0.4,2)

MSCI EUROPE - CAL FY0 WTD EPS As
proposed GA
AIC & BIC

EU DS. MARKET DIVIDEND YIELD — BD DISCOUNT RATE / SHORT TERM Aq

S&P 500 COMPOSITE PRICE INDEX / MSCI EUROPE PRICE INDEX Aq

EM CPI ALL ITEMS (HARMONISED) NADJ Ag

MSCI Eurp Oil & Gas REVISION WSMA(3,-0.4,2)

MSCI EUROPE - CAL FY0 WTD EPS Ag
ICOMP

BD BUSINESS EXPECTATIONS (PAN GERMANY) SADJ Aq

S&P 500 COMPOSITE PRICE INDEX / MSCI EUROPE PRICE INDEX Aq

EM CPI ALL ITEMS (HARMONISED) NADJ Ag

MSCI Eurp Oil & Gas REVISION WSMA(3,-0.4,2)

MSCI EUROPE - CAL FY0 WTD EPS Ag

68

Tabella 4.10: Variables selected by information criteria for the simple and proposed GA in Example 2
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Dummies Selection Criteria

Criterium k AIC BIC ICOMP
simple GA
AIC & BIC - —344.1 —328.0 -345.1
ICOMP - -343.9 -327.9 —356.1
proposed GA
AIC & BIC 1 —1155.7 —-1134.3 -1161.4
ICOMP 1 -1154.4 -1132.9 —-1171.3

Tabella 4.11: Characteristics of the solutions and values attained by the
information criteria, applying the simple and proposed GA respectively, in
Example 2

Diagnostic tests
Criterium Breush-Pagan Durbin-Watson Jarque-Bera
statistic p-value statistic p-value statistic p-value

simple GA
AIC & BIC  14.6335 0.9945  2.2227  0.4224 36.1626 < 0.001
ICOMP 11.6267  0.9796 2.1430  0.6547 28.3599  0.0013

proposed GA
AIC & BIC 8.1971  0.8543  1.7928  0.1589  1.8707  0.3096
ICOMP 9.4480  0.9075  1.8602  0.2828  0.3949 > 0.5

Tabella 4.12: Diagnostic tests for models selected by information criteria
with the simple and the proposed GA in Example 2

Fit measure Forecast measures

Criterium Rgdj’k ME RMSE MAE U CDC
simple GA
AIC & BIC 0.0962 -0.0274 0.4615 0.2485 9.2359 57%
ICOMP 0.0951 -0.0041 0.0348 0.0274 0.6955 61%
proposed GA
AIC & BIC 0.3460 -0.0088 0.0356 0.0293 0.7134 54%
ICOMP 0.3379 -0.0098 0.0387 0.0296 0.7362 61%

Tabella 4.13: In-sample fitting and out-of-sample forecasting results of the
Energy excess returns obtained by the simple and the proposed GA in
Example 2
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outlier detection method, presented by |Chiang et all M), was included

to improve predictive accuracy.

Two examples of the applicability of the algorithm to real problems are
described and its performance is compared to the GA-plan developed by
Balcombe (IMH), following the purpose of producing short-term forecasts
for the excess returns of the MSCI Europe Energy sector on the MSCI Eu-
rope index. In the first application, a reduced pool of potential informative
predictors was selected on the basis of the correlation between dependent
and independent variables and the undertaken problem was to detect the
model with the best dimension and its constituents. In the second appli-
cation, I considered all predictors lagged 1-month and the objective was to
give an approximation to the excess return process with a linear model of
fixed dimension. Furthermore, I investigated predictability performances of
the different versions of the best model suggested by information criteria
with a recursive estimation-window approach. Results show that the com-
pared procedures behave in a similar manner in the out-of-sample period,
but, differently from the simple GA, the proposed plan is able to detect
models satisfying decision maker assumptions and outliers in the in-sample
period, improving consistency and versatility of the econometric modeling.
Moreover, a remarkable capability to predict excess returns of the Energy
sector may be seen.

This work presents promising initial efforts on searching efficiently models
with several constraints in complex solution spaces with high dimensions in
financial problems of portfolio selection and econometric modeling.

Bibliografia

Ahumada, H. A.: 1985, An Encompassing Test of Two Models of the Bal-
ance of Trade for Argentina, Oxford Bulletin of Economics and Statistics
47(1), 51-70.

Akaike, H.: 1973, Information theory and an extension of the maximum
likelihood principle, in P. B. N. and C. F. (eds), Second international
symposium on information theory, Academial Kiado, Budapest, pp. 267
281.

Avramov, D.: 2002, Stock return predictability and model uncertainty,
Journal of Financial Economics 64, 423-458.

Azadeh, A., Ghaderi, S. F., Tarverdian, S. and Saberi, M.: 2007, Integration
of artificial neural networks and genetic algorithm to predict electrical

91




CAPITOLO 4. PREDICTING VIA A CONSTRAINED GA

energy consuption, Applied Mathematics and Computation 186, 1731—
1741.

Balcombe, K. G.: 2005, Model Selection Using Information Criteria and
Genetic Algorithms, Computational Economics 25, 207-228.

Bossaerts, P. and Hillion, P.: 1999, Implementing Statistical Criteria to
Select Return Forecasting Models: What Do We Learn?, The Review of
Financial Studies 12(2), 405-428.

Bozdogan, H.: 1988, Classification and Related Methods in Data Analy-
sis, North-Holland, Amsterdam, chapter ICOMP: A New Model Selection
Criterion, pp. 599-608.

Bozdogan, H.: 2000, Akaike’s Information Criterion and Recent Develop-
ments in Information Complexity, Journal of Mathematical Psychology
44, 62-91.

Campos, J. and Ericsson, N. R.: 1999, Constructive Data Mining: Modeling
Consumers’ Expenditure in Venezuela, Econometrics Journal 2(2), 226—
240.

Campos, J., Ericsson, N. R. and Hendry, D. F.: 2005a, General-to-Specific
Modeling, Edward Elgar, Cheltenham.

Campos, J., Ericsson, N. R. and Hendry, D. F.: 2005b, General-to-specific
Modeling: An Overview and Selected Bibliography, International Finance
Discussion Papers 838, Board of Governors of the Federal Reserve System.

Chan, L. K. C., Jegadeesh, N. and Lakonishok, J.: 1996, Momentum
Strategies, The Journal of Finance 51(5), 1681-1713.

Chiang, L. H., Pell, R. J. and Seasholtz, M. B.: 2003, Exploring process data
with the use of robust outlier detection algorithms, Journal of Process
Control 13, 437-449.

Costantini, M. and Pappalardo, C.: 2008, Combination of Forecast Methods
Using An Algorithm-Based Procedure, Economic Series 228, Institute for
Advanced Studies, Vienna.

Cremers, K. J. M.: 2002, Stock Return Predictability: A Bayesian Model
Selection Perspective, The Review of Financial Studies 15(4), 1223-1249.

Deb, K.: 2001, Multi-Objective  Optimization Using FEvolutionary
Algorithms, Wiley, New York.

92




BIBLIOGRAFIA

Dorsey, R. E. and Mayer, W.: 1995, Genetic algorithms for estimation
problems with multiple optima, nondifferentiability, and other irregular
features, Journal of Business and FEconomic Statistics 13, 53—66.

Dunis, C. L. and Williams, M.: 2005, Applied Quantitative Methods for
Trading and Investment, Wiley Finance Series, Wiley, chapter Appli-
cations of Advanced Regression Analysis for Trading and Investment,
pp. 1-40.

George, E. 1.: 2000, The Variable Selection Problem. University of Texas
at Austin.

George, E. I. and McCulloch, R. E.: 1993, Variable Selection Via Gibbs
Sampling, Journal of the American Statistical Association 88(423), 881—
889.

George, E. I. and McCulloch, R. E.: 1997, Approaches for bayesian variable
selection, Statistica sinica 7, 339-373.

Gilbert, C. L.: 1986, Professor Hendry’s Econometric Methodology, Oxford
Bulletin of Economics and Statistics 48(3), 283-307.

Goldberg, D. E.: 1989, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, New York.

Grenouilleau, D.: 2004, A sorted leading indicators dynamic (SLID) fac-
tor model for short-run euro-area GDP forecasting, FEconomic Paper
219, Directorate-General for Economic and Financial Affairs, European
Economy.

Grenouilleau, D.: 2006, The Stacked Leading Indicators Dynamic Factor
Model: A Sensitivity Analysis of Forecast Accuracy using Bootstrapping,
Economic Paper 249, Directorate-General for Economic and Financial
Affairs, European Economy.

Hady, A. and Siminoff, J.: 1992, Comments on Paul and Fung (1991),
Technometrics 34(3), 373-374.

Harvey, D. 1., Leybourne, S. and Newbold, P.: 1998, Tests for forecast
encompassing, Journal of Business and Economic Statistics 26, 254-259.

Hasheminia, H. and Niaki, S. T. A.: 2006, A genetic algorithm approach to
find the best regression /econometric model among the candidates, Applied
Mathematics and Computation 183, 337-349.

93




CAPITOLO 4. PREDICTING VIA A CONSTRAINED GA

Hendry, D. F.: 1983, Econometric Modelling: The ‘Consumption Function’
in Retrospect, Scottish Journal of Political Economy 30(3), 193-220.

Hendry, D. F.. 1995, Dynamic FEconometrics, Advanced Texts in
Econometrics, Oxford University Press, Oxford.

Hendry, D. and P.Clements, M.: 2002, Pooling of Forecasts, Econometrics
Journal 5, 1-26.

Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky, C. T.:
1998, Bayesian Model Averaging, Technical report 9814, Department of
Statistics, Colorado State University.

Hoeting, J. A., Raftery, A. E. and Madigan, D.: 1996, A method for simul-
taneous variable selection and outlier identification in linear regression,
Journal of Computational Statistics 22, 251-271.

Holland, J. H.: 1992, Adaptation in Natural and Artificial Systems, second
edn, University of Michigan Press.

Jegadeesh, N.: 1990, Evidence of Predictive Behavior of Security Returns,
The Journal of Finance 45(3), 881-898.

Kaboudan, M. A.: 2000, Genetic Programming Prediction of Stock Prices,
Computational Economics 16, 207-236.

Koza, J.: 1992, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, The MIT Press, Cambridge, MA.

Leontitsis, A. and Pange, J.: 2004, WSMA: in between weighted and sim-
ple average, 17th Annual Pan-Hellenic Conference on statistics, Leukada,
Greece, pp. 519-526.

MacDonald, R. and Taylor, M. P.: 1992, A stable us money demand
function, 18741975, Economics Letters 39(2), 191-198.

Michalewitz, Z.: 1994, Genetic Algorithms + Data Structure = FEvolution
Program, Springer-Verlang, New York.

Miller, A. J.: 1990, Subset Selection in Regression, Chapman and Hall, New
York.

Pesaran, M. H. and A.Timmermann: 2003, How Costly is it to Ignore Breaks
when Forecasting the Direction of a Time Series? DAE Working Paper
No. 0306.

94




BIBLIOGRAFIA

Pesaran, M. H. and Pesaran, B.: 1997, Working with Microfit 4.0, Oxford
University Press.

Pesaran, M. H. and Timmermann, A.: 1995, Predictability of Stock Re-
turns: Robustness and Economic Significance, The Journal of Finance
50(4), 1201-1228.

Pesaran, M. H. and Timmermann, A.: 2000, A Recursive Modelling
Approach to Predicting UK Stock Returns, The FEconomic Journal
110, 159-191.

Pesaran, M. H. and Timmermann, A.: 2004, Real Time Econometrics,
Discussion Paper 1108, 1ZA.

Pynnénen, S.: 1992, Detection of Outliers in Regression Analysis by
Information Criteria, Discussion Paper 146, University of Vaasa.

Rapach, D. E. and Strauss, J. K.: 2008, Forecasting US Employment Growth
Using Forecast Combining Methods, Journal of Forecasting (27), 75-93.

Runarsson, T. P. and Yao, X.: 2002, Fvolutionary Optimization, Vol. 48,
Kluwer Academic Publisher, USA, chapter Constrained Evolutionary
Optimization - the penalty function approach, pp. 87-113.

Schwarz, G.: 1978, Estimating the dimension of a model, Annals of Statistics
6, 461-464.

Smith, A. E. and Coit, D. W.: 1997, Handbook of Evolutionary Computation,
Oxford University Press, chapter Penalty Functions, pp. C5.2:1-6.

Stock, J. H. and Watson, M. W.: 2006, Handbook of Economic Forecasting,
Vol. 1, North-Holland, chapter Forecasting with many predictors, pp. 515—
554.

Tolvi, J.: 2004, Genetic algorithms for outlier detection and variable
selection in linear regression models, Soft Computing 8, 527-533.

95







Investment using evolutionary learning
methods and technical rules

In this chapter, I propose a genetic learning approach to generate technical
trading systems for stock timing. The most informative technical indicators
are selected from a set of almost 5000 signals by a multi-objective genetic al-
gorithm with variable string length. Successively, these signals are combined
into a unique trading signal by a learning method. I test the expert weight-
ing solution obtained by the plurality voting committee, the Bayesian model
averaging and Boosting procedures with data from the the S&P 500 Com-
posite Index, in three market phases, up-trend, down-trend and sideways-
movements, covering the period 2000-2006. Computational results indicate
that the near-optimal set of rules varies among market phases but presents
stable results and is able to reduce or eliminate losses in down-trend periods.

5.1 Introduction

A major concern in investment decisions is to exploit short-term market op-
portunities such as trend spotting and momentum. A method that is widely
used by practitioners to this end is technical analysis, or more generally
speaking, technical trading strategies, which attempts to forecast future
movements by analyzing past prices and volumes, focusing on particular
charts and patterns that are supposed to have predictive value and dismiss-
ing exogenous factors, such as political events, fiscal policies or economic
environments. For example, [Covel (IZDQH) and [Faber \2Q0_ﬂ) deal with the
application of trend following methodologies to financial markets, whereas
Jegadeesh (1990) and|Chan et all (1996) take into account price momentum,
finding that the profitability of strategies based on momentum is not due to
their systematic risk or to delayed stock price reactions to common factors.
Trend following and momentum trading systems work because markets ex-
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hibit momentum due to a cognitive bias, i.e. undereaction and overeaction
at different timescales, as described in [Kahneman and Tversky (1979): hu-
mans have an irrational tendency to be less willing to gamble with profits
than with losses, thus investors tend to sell their winners too early and hold
on to losers too long.

Since technical analysis has a visual nature and refers mainly to human
expectations and attitudes, it has hardly been accepted in the academic
community. The first results by Alexander 964) during the 1960s and
successively by [Fama and Blumé (1966) and (@) during the 1970s
supported the efficient market hypothesis, which states that all relevant in-
formation is contained in current prices, i.e. prices follow Markov processes.
Conversely, some recent results give empirical evidence on the potential of
this methodology: for example, Neftci 19_9_]J) has showed that the moving
average rule can detect useful information in nonlinear time series and in
particular in financial markets, whereas Brock et all (IlQBj) have developed
simple technical trading rules based on moving averages and support and
resistance that may be applied to the Dow Jones Industrial Average to pre-
dict stock price changes.

From these seminal works a considerable amount of academic literature have
been developed in the last 20 years to improve the existent technical trading
systems or create new ones. T'wo main approaches have been followed. On
one hand, by using some combinations of simple indicators, such as trend
indicators and moving averages, to dispatch trading signals and, on the oth-
er hand, by considering artificial intelligence techniques to identify optimal
trading rules.

To the first class belong the CRISMA trading system developed by Pruitt
and White (1988) and the trading rules described by @ @) The
CRISMA trading system is based on three components: a moving average
indicator, a relative strength indicator and the cumulative volume of trans-
actions. This system showed positive returns over a 10-year period, from
1976 to 1985, accounting for 2% of transaction costs. The Gengay trading
rule are based on non-parametric models which maximize the total return of
an investor strategy. These rules provided a significant forecast profitability
over the random walk model for the period from 1973 to 1992 using daily
spot rates for the British pound, Deutsche mark, French franc, Japanese yen
and Swiss franc.

To the second class belong automated trading systems that embed genetic
algorithms, neural networks and expert systems (the interested reader may

refer to [Trippi and Turbarl (1990) for a detailed review of these method-

ologies). In particular, the problem of parameter optimization in technical
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trading rules in order to avoid data-snooping and surv1vorsh1p bias has been
solved with a genetic algorithm in - (IZDDH) These
authors predict the General Index of Madrid Stock Market over an out-of-
sample test period of 2188 daily observations, from 16 December 1988 to
15 November 1997. This approach showed a remarkable profitability on the
classical buy-and-hold strategy.

The problem of automatically generate new trading rules is tackled for the
first time in [Allen and Karjalainen ), where a genetic programming
approach is applied to the S&P 500 with daily prices from 1928 to 1995.
However, these rules were not consistently better than the buy-and-hold
strategy in the out-of-sample test periods. A similar approach, based on
genetic programming, has been considered in Potvin et all (IMA) to ana-
lyze 14 Canadian companies listed on the Toronto Stock Exchange Market,
including daily stock prices and transaction volumes from 30 June 1992 to
30 June 2000. The results suggests that trading rules generated by genetic
programming are useful when the market falls or is quite stable and are not
beneficial on the buy-and-hold strategy when the market is rising.

Expert systems generated by a genetic algorithm are proposed in Korczak
and Roger (2002) to analyze 24 of the most important stocks of the CAC 40
Index. These authors used three years of daily data, from 1997 to 1999, with
transaction costs of 0.25%. On each stock 10 experiments with random be-
ginning dates were performed, where the training period was 261 days long
and the test period 7-days long. The results suggest that genetic algorithms
are capable of efficiently extract the relevant indicators and function param-
eters in a short-term trading perspective.

The system proposed in MJ:La_amLSlyl (120112) uses technical indicators
with fuzzy logic to create a fuzzy indicator that recommends the position
on the market. The method examined various companies from 1995 to 1999,
considering different rules in terms of risks and trends of the stock price, and
proved to be effective.

Kwon and Moon (Imﬁ) presents a hybrid neurogenetic system with a con-
text based ensemble method of neural networks which dynamically changes
relative to the test day’s context. The procedure was tested on 36 companies
in NYSE and NASDAQ from 1992 to 2004, showing on average a notable
improving over the buy-and-hold strategy.

The applicability of machine learning methods to formulate trading strate-
gies using technical indicators has grown considerably in the last years. A
non-parametric kernel regression for technical pattern recognition is devel-
oped in Lo et all (M) in order to forecast a large number of U.S. stocks
for the period 1962-1996. Results show that technical indicators provide
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incremental information comparing the unconditional empirical distribution
of daily stocks returns to the conditional distribution on specific technical
indicators. In |Andrada-Félix and Fgrnand@z—Berigugﬂ M) learning al-
gorithms are used to increase the accuracy of the prediction by averaging
the decision of a set of variable moving averages: boosting, Bayesian model
averaging and committee methods are compared for predicting the NYSE
Composite Index from January 1993 to December 2002 and have supplied
better out-of-sample performance than any single moving average.

In this chapter, I predict the market price using an evolutionary learning
ensemble approach, where a wide range of different types of technical indica-
tors is considered as input variables, from which a genetic algorithm selects
the more profitable signals and a learning machine generate the trading ex-
pert system.
Inspired by |Andrada-Félix and Fgrnand@z—Berigugﬂ (IM), the capabili-
ties of three learning methods are compared (boosting, Bayesian model av-
eraging and committee) in different phases of the market: up-trend, down-
trend and sideways-movements.

With respect to the aforementioned literature, where the stock timing is pre-
dicted by considering a single economic or statistical objective, this chapter
introduces a learning-based multi-objective genetic algorithm that takes in-
to account financial and statistical criteria at the same time. Since the
algorithm generates linear combinations of classical technical indicators, the
proposed solutions are easier to be interpreted than those suggested by other
artificial intelligence techniques, such as neural networks and genetic pro-
gramming. Moreover, in comparison to the solutions generated by classi-
cal pooling forecasting methods, where hundreds of technical indicators are
combined, admitting a variable length chromosome representation makes
possible a reduction in the complexity of solutions, since the algorithm is
able to detect the more informative technical indicators. The results in
terms of predicability are in line with the classical literature.

The remainder of the chapter is organized as follow. Section II gives a brief
overview of the types of technical indicators adopted and illustrates the
trading rules they generate. Section III describes the employed methodolo-
gies, section IV presents the experimental results and discussions. Finally,
Section V concludes the chapter with a summary and some remarks.
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5.2 Trading rules

5.2.1 Technical indicators

The inputs to the algorithm are some of the most common technical indi-
cators considered in academic studies and technical analysis literature (see,

for example, Murphyl (1998) and [Sullivan et all (1999)).

e RATE OF CHANGE MOMENTUM INDICATOR
The rate of change (ROC) indicator represents the speed at which a
variable changes over a specific period of time. In this study, it is
calculated as the ratio between the current closing price P, and the
closing price n days in the past P;_,_1, i.e.

b
Pt—n—l .

ROC(n);

The trading rule at time ¢ associated with this indicator is

Buy, if ROC(n);—1 <1 and ROC(n); > 1;
Sell, if ROC(n);—; > 1 and ROC(n); < 1;
Hold, otherwise.

e MOVING AVERAGE INDICATORS
A moving average is a mean value calculated over a previous rolling
period of fixed length n. I use two types of moving averages for a rolling
window of length n at time ¢: the simple moving average (SMA),
defined by

n—1
1

SMA(n); = E EPt_i
=0

and the weighted moving average (WMA), calculated as

n—1 .
n-—1

WMA(n), = —Pii.
i=0

where n = Z;L:_ll 4. Further, I consider the exponential moving average
(EMA), expressed by

EMA(TL)t = %Pt + <1 — %) EMA(TL)t_l
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EMAy(n) = Py and 0 is a reference date.

Generally speaking, a moving average indicator uses the down crossing
of a shorter moving average with respect to a longer moving average as
a buy signal and the crossing in the opposite direction as a sell signal.
I focus on three variations of this definition: the variable-length mov-
ing average (VMA) rule, applied for example in Brock et all dlB_Qj),
a variation of the weighted and simple moving average (WSMA) rule,
proposed in [Leontitsis and Pange (1201)_4]), and the moving average con-
vergence divergence (MACD) rule, described in detail in Fusai and
Roncoroni (2008).

The VMA at time ¢ is the difference between a n; days SMA (shorter)
and a ny days SMA (longer):

VMA(nl, ng)t = SMA(nl)t — SMA(ng)t
with ny < no.
The WSMA is a triple smoothed linear combination of the difference
of a ny WMA and a no SMA and is expressed by

GD(ni,n2)y = (1+v)WMA(n1): —vSMA(n2):

with ny < ny and v = 0.4. The WSMA is obtained by applying twice
the procedure used to compute GD (see itsi )
for the exact definition). I consider a generalized WSMA (gWSMA)
that can be obtained by allowing different number of linear combina-
tions and different choices of v.

The MACD indicator combines two EMA of past prices:

MACD(TLl, ng)t == EMA(’I’Ll)t - EMA(ng)t

with nqy < no. It is a trend follower procedure that performs better
during strong trending periods and, conversely, tends to lose money
during periods of choppy trading. In connection with the MACD, a
trigger signal SL, expressed as a k period EMA of the MACD, is also
used to obtain the MACD histogram (MACDH) indicator, defined by

MACDH,; = MACD, — SLy,

which highlights variations in the spread between fast and slow signals.
Denoting with MA the generic moving average indicator, the trading
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rule is
Buy, if MA(n);—1 <0 and MA(n); > 0;
Sell, if MA(n);—1 > 0 and MA(n); < 0;
Hold, otherwise.

DyNAMIC SUPPORT/RESISTANCE INDICATOR

The support/resistance (S&R) indicator represents key market junc-
tures where supply and demand meet. In particular, support is the
price level at which buyers are expected to enter the market and the
price stops going down, whereas resistance is the price level at which
sellers are expected to enter the market and the price stops going up.
The dynamic S&R (dS&R) takes into account price levels and their
volatility, expressed through the standard deviation o on the last n
days. It is computed by taking 20 above and 20 below the n days
price average. The dynamic support and resistance at time ¢ relative
to the last n observations are respectively

Sup(n); = SMA(n); —20(n);
Res(n); = SMA(n); + 20(n);

where SMA(n); is the n days moving average at time ¢ and oy is its
standard deviation, i.e.

n

o(n) = \/Zizt—n(Pi — SMA(n),;)?

The trading rule developed on the dS&R indicator is

Buy, if P,_y < Sup(n);—1 and P, > Sup(n)y;
Sell, if P,y > Res(n);—1 and P; < Res(n)y;
Hold, otherwise.

STOCHASTIC MOMENTUM INDICATOR

The stochastic (K&D) indicator is a momentum oscillator intended to
help determine the strength of price trends and to highlight potential
short term market overbought and oversold levels. It has two main
variables, %K and %D, defined at each time ¢ as:

Pt o Ptmzn(n)
P ()~ B ()

%K (n); = 100

103




CAPITOLO 5. INVESTMENT USING EVOLUTIONARY LEARNING

where P/ (n) and P/"**(n) are the minimum and maximum closing
prices over a n days period, respectively, and

3

K(n)i—;
%D; = E %’né?)
=1

is the 3 days moving average of %K. In this case the trading signal
becomes

Buy, if %K(n)i—1 < %D;—1 and %K(n); > %Dy;
Sell, if %WK(n)i—1 > %Dy—1 and %K (n); < %Dy;
Hold, otherwise.

ON BALANCE VOLUME INDICATOR

The on balance volume (OBV) represents the flow of volume in a stock
and is calculated as a running cumulative total of the daily volume
transactions, adding the amount of daily volume when the closing
price increases, and subtracting the daily volume when the closing
price decreases:

OBV;_1—Vol;, if P, < P4
OBV; = { OBV, ,, if P, =P,
OBV, +V01t, if P> P4

where Vol; is the volume at day ¢.
The rule employed for trading is obtained by comparing the OBV level
with the simple moving average on the last n days of the OBV itself:

Buy, if OBV;_; < SMA(n);—; and OBV > SMA(n)y;
Sell, if OBV;_1 > SMA(n);—1 and OBV, < SMA(n);
Hold, otherwise.

EASE OF MOVEMENT VALUE

The ease of movement value (EMV) is a momentum indicator which
attempts to identify the amount of volume required to move prices
and is calculated as

Midpoint, — Midpoint,_,

EMV,; =

BoxRatio;
where
th’gh Plow
Midpoint, = %
Vol; /10000
BoxRatio; = ol: /

y b
Pthzgh _ Ptlow
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Indicator Parameter
ROC n = 5,10, 15, 20, 25, 30, 35, 40, 45, 50, 60
VMA n1 = 1,2,5,10, 15, 20, 25, 30, 35, 40, 50,
75,100, 125,150
ny = 25,10, 15, 20, 25, 30, 35, 40, 50, 75,
100, 125,150, with no > ny

gWSMA  ny = 5,10,15

ny = 30, 45, 60
v=—0.4,-0.2,0,0.2,0.4
T=1,3

MACDH n; = 8,9,10,11,12
ny = 17,20, 23,26, 29

k=8,9,10
dS&R n = 5,10, 15,20, 25, 30, 35, 40, 45, 50, 60
K&D n = 5,10, 15,20, 25, 30, 35, 40, 45, 50, 60

Tabella 5.1: Parameterizations of the technical indicators

with Pthigh and P/°" indicating the highest and lowest price in day t.
In defining BoxRatios, I follow the custom in literature to scale the
volume by dividing by 10000 to overcome flat signals. The investment
signal is:

Buy, if EMV; > 0;

Sell, if EMV,; < 0;

Hold, otherwise.

The parameterizations I use for the six groups of technical indicators are
reported in Table B.11
5.2.2 Filters

In order to avoid deceptive signals and to reduce transactions costs, I include
three classical types of filters applied to each investment signal:

e the fized percentage band filter, that requires the buy or sell signal to
exceed a fixed amount;

e the time delay filter, that requires the buy or sell signal to remain valid
for a predefined number of days before action is taken;
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Filter Parameter
fixed percentage band p =0,0.1%,0.5%, 1%, 1.5%,
2%, 3%, 4%, 5%

time delay d=2,3,4,5
holding time h =5,10,15

Tabella 5.2: Parameterizations of the three filter employed

e the holding time filter, that consists in holding a long or short position
for a prespecified number of days, ignoring all other signals generated
during that time.

Table reports the parameterizations of the filters.
The complete universe of trading indicators after filtering is equal to 5286.

5.3 Evolutionary learning

Evolutionary learning may be thought as the evolutionary computation ap-
proach applied to machine learning (for an introductory tutorial, see Yao and
Liu (2005)). From this point of view, the problem of building a promising in-
vestment signal for future trading by pooling technical indicators translates
into the problem of finding the best combination of finite-state machines
from a population of solutions enhanced by a genetic algorithm (GA).

The developed procedure is shown in Figure 5.1} it is constituted by two in-
terconnecting modules, the learning module, which is built up on the boost-
ing and statistical learning methods, and the evolutionary module, which
interconnects with the previous and where a non-dominated sorting GA,
the NSGA-IT procedure by Deb et. al (IM), finds multiple Pareto-optimal
solutions. A detailed description of these steps follows.

5.3.1 Learning module

The filtered signals are transformed in binary-classifier machines dividing
price movements into two classes, upward and downward. In this manner
the resulting label space Y, representing the foregoing movements of the
market, is also binary, taking a value of —1 for a sell signal and a value of
+1 for a buy signal. The holding signal is obtained as a confirmation of the
previous sell or buy indication. Given a trading rule h, its value at ¢ for a
time series x is denoted by h(z); € Y.
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Evolutionary
Algorithm
Technical : I~ Choice of a solution
Indicators II in the Pareto front
Classifier
Learning
Machine
Input High, Low, Buy, Sell or Hold
Close Prices and
Volume

Figura 5.1: Outline of the evolutionary learning algorithm for trading
analysis

Learning algorithms are used at this stage to increase the accuracy of tech-
nical predictions by averaging the decision of an ensemble of these classifier
machines. To this end, three different methods are considered: the Plurality
Voting Committee (PVC), the Bayesian Model Averaging (BMA) and the
Boosting method (BOOST). All the algorithms take as input a training set
belonging to the time series x and produce a set of trading rules that are
collected to form a new trading signal, H(z), called expert system.

Plurality Voting Committee

The committee classifier uses the plurality voting rule to decide the output
of the committee. For the market timing it becomes a simple average of the
predictions from each trading rule. The PVC signal is given by

Hpyc(z) = sign (% > hi(x)t>
=1

where the average is made on the n rules {h;};=1 ., selected by the GA
and sign(z) =1 if 2 > 0 and -1 otherwise.

Bayesian model averaging

Given a set of candidate classifiers, the BMA approach consists of taking a
linear combination of the predictive distribution of each classifier, weighted
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by its posterior distribution (see |Hastie et all (IM) for a detailed explana-
tion).
As shown in|Andrada-Félix and F@rnand@z—Berfgl]gﬂ (IM), this definition
translates for the market timing problem in a combination of trading rules
weighted by the success rate on the training set X. Defining the rate of
success of the i-th trading rule h;, i = 1,...,n as

o %
BMA = =n
E?:l Sj
where s; = Zthl Ity,=n;(x),} represents the number of correct predictions
and I4 is the indicator function of the event A, the BMA signal is then

Hppia(x) = sign (Z aBMA,ihi(az)) .

i=1

In this manner, weights assigned by this classifier to each trading signal
depend on how well this indicator fits.

Boosting

Boosting finds a highly accurate classification rule by combining many clas-
sifiers, each of which has a performance at least slightly better than random
guessing, and for this reason they are called weak hypothesis.

The algorithm T consider is the Discrete AdaBoost for the two class prob-
lem due to Freund and Shapire (the interested reader may consult Freud
and Shapire (1997, 1999)) and also known as AdaBoost.M1 algorithm. Its
pseudo code is described in Figure Once a weak hypothesis h; has been
received, AdaBoost chooses a parameter apoosr,; that measures the impor-
tance assigned to h;. Note that apoost,; > 0 if the error rate ¢; satisfies
€; < 1/2 and apoosT,; gets larger as €; gets smaller. Next, the distribution
of weights w;(t) is updated modifying the individual weights, increasing the
weight of the examples misclassified by h; and decreasing the weight of cor-
rectly classified examples. Thereby each successive classifier is forced to
focus on the observations that are missed by the previous classifiers in the
sequence.

5.3.2 Evolutionary module

The investment timing translates into a multi-objective evolutionary opti-
mization problem where candidate solutions are detected among the expert
trading systems generated by learning methods.
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Algorithm AdaBoost.M1

Input:

e sequence of T examples {(x1,y1), ..., (xr,yr)} withlabels — y, € Y ={-1,4+1}

e integer n specifying number of hypothesis
Initialize the weights vector: wy(t) = % for t =1,..,T
Do fori=1,...,n
1. Fit the classifier h;(x) to the training data using weights w; (¢)

2. Compute the error rate of h;(z):
_ X wi® Iy h )
Sl wilt)

€

3. Set

1 1-— €;
QBOOST,i = 5 log

€;

4. Set the new weights vector to be
wit1(t) = w; (t) exp(—asoost,iyehi(z):)
5. Normalize w;41(t)

Output: final hypothesis

i=1

Hpoosr(z) = sign (Z aBOOST,ihi(I)>

Figura 5.2: The discrete adaptive boosting algorithm
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NSGA-II

The evolutionary procedure adopted is the NSGA-II algorithm and its pseu-
docode is outlined in Figure 53] This algorithm builds a population of com-
peting individuals and sorts them with a non-dominated sorting procedure,
which results in all the chromosomes being assigned a rank. The selection
that follows uses the crowded tournament strategy. Crossover and mutation
are then applied to create a new pool of offsprings, which are combined with
parents, before partitioning the enlarged pool into fronts. Elitism is then
conducted by adding a crowding distance to each member to generate the
next population. This ensures diversity in population and helps the algo-
rithm to explore the fitness landscape (see (Coello et, all (IMH) for a detailed
explanation of the procedure). The chromosomes in the first front of the
final population constitute the set of solutions. A validation function is de-
fined to select a chromosome in the solution set which is best suited for the
investment timing problem. To this end, the data set is divided into three
parts: the training set that is defined over the period [1,T},], the validation
set, defined over [T} + 1, T,] and the testing set defined over [Tyq; + 1, Tist]-

Chromosome representation

Each individual is represented by a subset S of technical trading rules from
the entire universe S,;;. Coding solutions as fixed length strings has several
limitations, such as overfitting of the training data and presence of redundant
signals in the final classifier. To overcome these drawbacks, the chromosomes
that represent each solution have variable length and are coded on a discrete
alphabet y of cardinality |Syy;| + 1:

X = {0717 3 ‘Sall‘}a

where each non-zero number corresponds to a technical signal in S,; and
the zero index has been added in order to utilize the existing evolutionary
operators as much as possible and corresponds to the “no signal” input.
After having fixed a maximum length [,,,., strings are filled with 0’s until
they have [,,q. alleles, in order to make them comparable. Subsequently,
each string is rearranged so that all 0’s are pushed at the end. For example,
chromosomes

stringgy = 10345000000
strings = 12745120157 000
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have length l,,,,.. = 8 but string; represents 3 signals whereas strings has 5
signals.

An individual is valid if it has at least two non-zero alleles and all the
included signals are different. Moreover, relative to PVC and BMA methods,
chromosomes are sorted in an increasing way to guarantee more diversity
among population.

Evolutionary operators

Crossover. Uniform crossover is used to avoid the positional and distribu-
tional bias that may prevent the production of good solutions, see

). A control on the composition of each offspring is included to guar-
antee its admissibility.

Mutation. T use an alternating mutation probability p,,(g) that depends
on the generation g € {1,...,G}, throughout a triangle wave relation, to
provide a better balance between exploration and exploitation of the search
space. An example of its graph is given in Figure[5.4l I consider the mutation
operator developed in Ba&dmadhmund.]ﬂaj (IZDD_ﬂ) for each position in
a string, it is determined whether conventional mutation can be applied or
not with probability u,,. Otherwise, the position is set to 0 with probability
im, and each “no signal” is set to a signal according to another mutation
probability f,,. The string is then reordered to have the admissible form
previously described.

Objectives

The problem of expert trading system selection is formulated by using sta-
tistical and economic criteria at the same time, because the outcomes sug-
gested by one criterium alone may be very different from the outcomes
recommended by the other, in the sense that standard forecasting criteria
are not necessarily well suited for assessing the economic significance of the
predictions and vice versa, as highlighted in [Sullivan et all (ILM) The first
objective considers both the profitability and the risk profile by finding a
subset of technical trading rules S from S,;; that are able to capture market
directional changes that influence the net profit in a simple trading strategy,
where total funds are invested in either a stock market or in a risk free se-
curity. Following M@ (Ilil&d), the forecast of the learning
machine is used to classify trading days into periods in (earning the mar-
ket return) or out of the market (earning the risk free return). The return
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obtained following the forecasts of S at time t is given by

R(S,t) = ridy(t) + r{ I,(t)

where r; is the daily continuously compounded return constructed on the
closing price on day t; 7‘{ is the daily risk free rate; I;(t) and I4(t) are indi-
cator variables equal to one if the classifiers signal buy and sell, respectively,
and zero otherwise, satisfying the relation I,(t) - Is(t) = 0, for all ¢ € [1, T}, ].

The expert system net return at time ¢ is defined as

Rnet(‘97 t) = R(Sv t) + O(t)
where C(t) is equal to log ¢ if a transaction took place at time ¢ and 0

otherwise, with ¢ denoting the transaction costs (expressed as a fraction of
the price and supposed constant over time). The risk measure is expressed
by the standard deviation of the daily net profit over a given time period
[ta,ts], denoted by o (S, t4,t). Thus the performance of the expert system S
may be evaluated with the modified version of the Sharpe ratio introduced

n[Andrada-Félix and Fernandez-Rodrigned (2008):

/L(Sa 17 Ttr)
econ 717Tr = —00- .7
f (S t ) O'(S,l,Ttr) >

where p(S,1,T,) is the mean net return over the training period [1, T}, ].
On the other hand, to pursue high classification power, the second objective
is designed to select expert systems by minimizing the number of missclas-
sified observations in the training period and by attempting to reduce the
number of trading rules involved. This objective function is defined by

miss(S, 1, T; S
fuat(S,1,T) = o &L T) 1]
Ttr lmam

where miss(S, 1, T}, ) is the number of missclassifications for S on [1, T}, ] and
the coefficients a1 and «» reflect the relative importance of the two statistics.
The resulting bi-criteria optimization problem can be stated as

, subject to S C Syy;.

max feCOIl (87 17 CZ}T’)
min fstat(57 17 ET)

When the data set used is clear from the context, I will suppress the depen-
dence on the time period in the functions introduced so far.
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Validation and testing

The validation function, defined on the interval [T}, + 1,7T,4], is used to
detect the best strategy for investments and is a weighted mean of the two

objectives:
fval(S) - weconfecon (S) + wstatfstat (8)7

where weeon and wgiat are the relative importance of economic and statistical
criteria respectively. On the testing set the selected expert system is tested
to assess its capability of prediction and its profitability.

5.4 Computational results

5.4.1 Parameter values

The best parameter setting for the GA is obtained from preliminary exper-
iments and is as follows:

® lar = 20;

e population size N = 500;

e maximum number of generations G' = 500;

e crossover probability . = 0.85;

e mutation probabilities p,, € [0.002,0.45] and ;1 = pime = 0.95;
e oy = 0.7 and ap = 0.3

Weeon = 0.6 and wgiat = 0.4

5.4.2 Data

I use daily data for the Standard & Poor’s Composite Index (S&P500) from 3
January 2000 to 29 December 2006. The data series include the high, low and
closing prices and the volume of transactions. No data on dividends declared
by the firms is used in the learning process. For the correspondlng perlod
following the custom in literature (see, for example,

)), the risk-free rate of return I adopt is the 3-month Treasury Bill
rat‘ and I set the one-way transaction costs at 0.25%. The time series of

The quotations for the S&P500 Index are taken from
http://www.finance.yahoo.com and for the 3-month Treasury Bill from
http://www.federalreserve.gov /releases/h15/data.htm
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Experiment Start of Start of Start of
Training Validation Testing
down-trend  03/01/2000 02/01/2002 01/04/2002
no-trend 02/01/2002 02/01/2004 01/04/2004
up-trend 02/01/2004 03/01/2006 03/04/2006

Tabella 5.3: Dates of the experiments

Learning method Ensemble constituents filter
PVC VMA(25,125) p (10%)

gWSMA(5,45,0.4,3)  p (3%)
MACDH(9,26,10) h (10)
MACDH(12,29,9) d (3)

BMA ROC(30) p (1.5%)
VMA (40,150) p (10%)

BOOST gWSMA(5,45-0.4,3)  p (3%)
VMA(2,250) p (1.5%)
ROC(5) p (10%)

Tabella 5.4: Comparisons of ensemble indicators for the period 3 January
2000 to 31 December 2002 (down-trend period)

the S&P500 closing prices in log-form and the discount rate of the Treasury
Bill are displayed in Figure

5.4.3 Experiments

Three sets of experiments are conducted to study the applicability of the
developed evolutionary learning methods in topical market phases, i.e. when
prices follow a downward trend (bear market), when they display sideways-
movements and when they have an upward trend (bull market), for short-
term investments. To this end, the data for each experiment, are divided
in three subsamples, the training duration, for fitting the technical signals
that is fixed to 24 months, the validation period, set to 3 months, and the
testing period, of 9 months. The starting dates of each subsample for the
experiments are reported in Table The solutions suggested by the
analyzed learning methods are listed in Table [£.4] and Each table
depicts an experiment. In the second column the ensemble constituents are
reported with their parameterizations and in the third the corresponding
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Learning method Ensemble constituents filter
PVC VMA(50,200) d (4)
MACDH(8,26,100) h (30)
BMA VMA (40,250) p (0.1%)
gWSMA(5,60,0.4,1) h (30)
MACDH(10,20,10) h (15)
BOOST ROC(10) h (30)
VMA(50,200) d (5)
gWSMA(15,30,-0.2,1)  h (30)

Tabella 5.5: Comparisons of ensemble indicators for the period 2 January

2002 to 31 December 2004 (sideways-movement period)

Learning method Ensemble constituents filter
PVC gWSMA(10,90,0,3) p (1.5%)
MACD(8,23,8) h (10)
BMA VMA(40,150) d (2)
VMA(200,250) p (10%)
gWSMA (15,45,-0.2,3)  h (30)
MACDH(10,17,8) h (30)
BOOST dS&R(30) p (10%)
gWSMA(15,45,0,3) h (30)

Tabella 5.6: Comparisons of ensemble solutions for the period 2 January
2004 to 29 December 2006 (up-trend period)
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filter with its parameter (p = fixed percentage band, d = time delay, h =
holding time). Comparing the solutions, it can be noted that the number of
considered signals varies from two to four, making easy the interpretations
of the compounded indicator. In all the solutions the final signal is gov-
erned mainly by the momentum indicators. The most important difference
among the experiments is the way technical information is filtered in the
final trading indicator:

i) during down-trend periods, almost all signals are passed under the
fixed percentage band filter;

ii) during sideways-movement periods, the most informative trading sig-
nals emerge from the holding time rule;

iii) in the up-trend experiment, the constituents information are filtered
by the fixed percentage band and the holding time rule.

The time delay filter holds only a marginal role and is seldom considered
in the solutions. Table B.7 6.8l and display the economic and statistic
performances of the solutions divided for experiments and for training, val-
idation and testing sets. To facilitate the comparisons among the economic
results, the net returns and the Sharpe ratio refer to annualized data.
Relative to the percentage of forecasting direction success, the PVC method
shows the best results, with a mean value of about 77%, against the 55% of
BMA and BOOST. From the profitability perspective, BMA and BOOST
have net returns similar or quite better than PVC. In particular, during the
first two experiments, these three learning procedures are able to reduce or
eliminate the potential losses that characterize the period from 2000 to 2004.
The Sharpe ratio confirms these findings, highlighting the great stability of
the results and the flexibility of the evolutionary learning approach.

Results are in line with the findings of|/Andrada-Félix and Fernan

), however, the evolutionary learning approach developed in this chap-
ter generates solutions less complex, and thus more easier to interpret, mak-
ing possible to focus on those signals that show to be more informative
for the future behavior of market prices. This selection is conducted on a
wide range of technical indicators, extending previous literature that solely

analyzed simple moving average rules (see for example Brock et all (llB_Qj),

Kwon and Kish (2002)).
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Learning Subset % forecasting Transactions Annualized Sharpe ratio

method direction success net return

PVC train 77.15 19 0.0717 0.1478
validation 77.97 0 -0.0252 -0.1464
test 74.87 9 -0.2049 -1.1712

BMA train 68.14 6 -0.0540 -0.1581
validation 52.54 0 0.0112 0
test 56.54 0 0.0111 0

BOOST  train 54.11 15 0.0953 1.6644
validation 57.63 4 0.1864 2.9417
test 53.93 1 -0.0795 -1.2483

Tabella 5.7: Statistic and economic performances for the period 3 January 2000 to 31 December 2002 (down-trend

period)
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CAPITOLO 5.

Learning Subset

% forecasting

Transactions

Annualized Sharpe ratio

method direction success net return

PVC train 75.94 3 0.2228 0.6801
validation 85.25 0 0.0636 0.6160
test 75.13 4 0.0124 0

BMA train 56.66 3 0.2601 1.4640
validation 50.82 0 0.0636 0.6160
test 49.74 4 0.0833 0.9882

BOOST train 58.25 7 0.3504 1.9083
validation  50.82 0 0.0636 0.6160
test 55.56 2 0.0776 0.8624

Tabella 5.8: Statistic and economic performances for the period 2 January 2002 to 31 December 2004 (sideways-

movement period)
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Learning Subset

% forecasting

Transactions

Annualized Sharpe ratio

method direction success net return

PVC train 83.70 0 0.1188 0.4720
validation 73.77 0 0.0812 0.8470
test 72.87 0 0.1184 1.2163

BMA train 57.46 6 0.1795 0.9730
validation 54.10 0 0.0812 0.8470
test 52.32 2 0.0535 0.5270

BOOST train 54.27 7 0.1384 0.7776
validation  50.82 1 0.0732 3.1623
test 59.57 2 0.1004 1.5058

Tabella 5.9: Statistic and economic performances for the period 2 January 2004 to 29 December 2006 (up-trend

period)
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5.5 Conclusions

In this chapter, I propose a method based on the evolutionary learning
paradigm for the daily stock index trading, by taking into account statistical
and economic objectives at the same time. A variable number of technical
indicators as input is selected by the algorithm to recommend buy/sell of
S&P 500 Index when certain price formation exist. The performance of
three different learning procedures is tested from 2000 to 2006, by dividing
the entire period in three trend-following subperiods. The analysis used
MATLAB program to generate the outputs.

Results indicate the stability of the methods analyzed over time both from
a statistical point of view and from an economic perspective. In particular,
in sideways-movement periods and especially in down-trend periods, they
predict correctly the major losses, a desirable characteristic for an automatic
trading system.
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Algorithm NSGA-II

Input:
e population size N
e number of generations G

Initialize random population P;
Evaluate objective values
Generate offspring population @ from P; by
i) selection
ii) crossover and mutation operators
Evaluate objective values
Do forg=1,...,G

1. Combine parent and child populations and create R, = P;U(Q,. Assign rank
to chromosomes in R, based on Pareto dominance and identify different
fronts F;, 1 =1,2,...

2. Set next population Pyy; = (), set a counter ¢ = 1.
Do until |Pj4q] + |F| < N

i) perform P4 = Py UF;
i) i=i+1

3. Niching: calculate crowding distances between points on each front and use
them to include the most widely spread N — |P,41] solutions

4. Create offspring population Q441 from P, by

i) crowded tournament selection

ii) crossover and mutation operators

Output: limited number of different solutions

Figura 5.3: Pseudocode of the NSGA-II algorithm
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GA-based market neutral strategies

In this chapter, a MATLAB tool based on genetic algorithms for active
portfolio management is described. The tool I have developed deals with
parameter optimization of trading signals for an integrated market neutral
strategy. In this chapter I will only provide a qualitative description of
the ideas and principles underlying the procedure, refraining from exploring
technical details. The chapter is organized as follows. First, an introduction
to market neutral strategies from an economic point of view is provided,
highlighting risks and benefits associated to these rules and focusing on
their quantitative formulation of these rules. In particular, the concepts
of long-plus-short and integrated neutral strategies are derived. A short
introduction to the evolutionary approach with expert trading systems for
portfolio optimization serves as bridge to explain the GA-Integrated Neutral
tool. The chapter concludes showing an application of the tool as a support
to decisions in the Absolute Return Interest Rate Strategies sub-fund of
Generali Investments.

6.1 Market neutral strategies

In general, market neutral strategies are not market timing strategies. Rather
than seeking to profit from correctly forecasting underlying market move-
ments, they seek to profit from detecting perceived mispricings in indi-
vidual securities and constructing portfolios that deliver the excess return
and /or risk associated with those securities, regardless of underlying market
changes. This is accomplished by holding balanced long and short positions
in various securities and/or by holding these securities in conjunction with
long or short positions in derivative securities so that the overall portfo-
lio’s exposure to primary risk factors, such as equity market and interest
rate risks, is neutralized. These strategies may use in-depth fundamental
analysis, technical approaches and/or quantitative valuation and portfolio
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construction techniques.

Market neutral tactics have the same basic aim as more conventional strate-
gies, i.e. to “buy low and sell high”. In more traditional active approaches,
however, the buying and selling are sequential events, whereas in market
neutral investing they are more often concurrent. A market neutral investor
buys underpriced securities and simultaneously sells an offsetting amount
of fundamentally related overpriced securities. Examples of this type of
investments are

e MARKET NEUTRAL EQUITY STRATEGY
It is a strategy that seeks to exploit investment opportunities unique to
some specific group of stocks by being long and short while maintaining
a neutral exposure to broad groups of stocks defined for example by
sector, industry, market capitalization, country or region.

e CONVERTIBLE BOND HEDGING

This form of hedging typically involves purchasing a convertible se-
curity and shorting the stock into which it is convertible. Shorting
reduces the investor’s exposure to changes in the stock price, because
price movements in the convertible are at least partially offset by the
price movements of the short stock position. More sophisticated vari-
ants include hedging so that the net expected position is fully hedged
with respect to changes in the stock price, or hedging so that the
net expected position is also fully hedged with respect to changes in
interest rates and/or credit spreads.

e FIXED INCOME STRATEGIES
These type of neutral strategies try to exploit perceived mispricing
among one or more fixed income instruments. Some of the most widely
used are:

i) Swap-spread arbitrage, that is a bet on the direction of swap rates,
Libor, treasury coupon rates and repo rates. A typical swap-
spread arbitrage trade would consist of a fixed receiver swap and
a short position in a Treasury bond of the same maturity. The
proceeds of the sale of the Treasury bond would be invested in a
margin account earning the repo rate. This trade is a simple bet
that the difference between the swap rate and coupon rate will
be hugher than the difference between Libor and the repo rate.

ii) Yield curve arbitrage strategies, that are designed to profit from
shifts in the steepness of, or kinks in, the Treasury yield curve by
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taking long and short positions on various maturities. This could
take the form of a butterfly trade, where, for example, the investor
goes long five-year bonds and short two and ten-year bonds, or
it may take the form of a spread trade, where the investor goes
short the front end of the curve and long the back end of the
curve. The strategy requires the investor to identify some points
along the yield curve that are “rich” or “cheap”.

ili) Government bond arbitrage refers to the difference between the
amount of interest gained on funds which have been borrowed at a
tax-free rate, and the interest on funds which have been invested
at a taxable rate rendering a greater yield.

iv) In their simplest form, volatility arbitrage strategies profit from
the tendency of implied volatilities to exceed subsequent realized
volatilities. This is done by selling options of fixed income in-
struments and then delta-hedging the exposure to the underlying
asset.

v) Capital structure arbitrage strategies, that exploit the lack of co-
ordination between various claims on a company, like its debt
and stock. The strategy involves buying one instrument of a
company’s capital structure and hedging that exposure by selling
another. For example, a trader who believes that the debt of a
company is overpriced relative to its equity would short the com-
pany’s debt and buy its stock. Capital structure arbitrage trades
may also trade junior vs. senior debt or even convertible bonds
vs. stock.

e MERGER ARBITRAGE

This is also called risk arbitrage. Typically merger arbitrage repre-
sents situations in which one invests simultaneously long and short in
the companies involved in a merger or acquisition. Risk arbitrageurs
are typically long the stock of the company being acquired and short
the stock of the acquirer. By shorting the stock of the acquirer, the
manager hedges out market risk, and isolates his/her exposure to the
outcome of the announced deal.

6.1.1 Risks related to neutral strategies

Because market neutral strategies are designed to eliminate systematic risk
factors, such as stock market or interest rate risk, they are often perceived
to have low risk but in general this is not true. In fact, risk levels may vary
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across different types of market neutral strategies and across portfolios in
a given strategy. The risk of any given strategy will depend upon multi-
ple factors, including the volatility of the underlying securities, the sources
of uncertainty impacting those securities, the models and methods used in
the investment process and the degree of leverage employed. At least in
the short term, equities are inherently more volatile than fixed-income in-
struments, so that one may expect market neutral equity strategies to be
inherently more volatile than fixed-income strategies. Furthermore, the in-
struments underlying some bond-based strategies, including mortgage and
convertible arbitrage, may be subject to extreme bounces of volatility be-
cause they include option-like elements that can cause them to behave in
nonlinear ways. As any investment strategy, market neutral strategies are
subject to uncertainty beyond anticipated volatility. Unexpected events can
cause actual and expected portfolio performance to diverge. Sources of un-
certainty can be introduced by unanticipated changes at company-specific
level, by developments in the broader economy and by regulatory and le-
gal events. In particular, credit risk, i.e. the risk that a counterparty to a
trade will default, may be a major issue for market neutral strategies than
for more conventional investment approaches, to the extent that the former
rely more heavily on over-the-counter derivatives. Traders using organized
exchanges are largely protected against counterparty default by the guar-
antees provided by exchange clearinghouses. For market neutral strategies
that require over-the-counter derivatives such as options and interest rate
swaps, due diligence must be conducted to ensure that counterparties are
creditworthy. The primary line of defense against uncertainty is diversifica-
tion. This is true for market neutral as well as for conventional investment
strategies. For example, diversification across different securities protects
against company-specific risks. Diversification across counterparties may
provide some protection against credit risk.

However, other problems, such as issues concerning portfolio constructions,
valuation process or risk measurement, may be subtle and difficult to de-
tect. As a partial solution, quantitative investment approaches may have
the advantage over more judgmental ones when it comes to detecting and
correcting these sources of error. They can thus provide a transparent audit
trail of cause and effect that can be used to detect and remedy potential
trouble spots.

In general, market neutral strategies are more dependent on leverage than
conventional investing. Leverage can take many forms, among them out-
right borrowing, repo arrangements, purchase of securities on margin, and
the short sale of borrowed securities. By increasing the number and size
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of positions a strategy can take, leverage can increase the return to that
strategy, but also the risk. If the strategy performs as expected, leverage
will multiply the profits. But it will also multiply the losses if the strategy
goes awry. In this sense, leverage magnifies all the risks discussed here. A
leveraged market neutral strategy (or any leveraged investment strategy) in
effect invests more capital than it has. When things go wrong, losses can
exceed the invested money, and as a result the fund can lose more than it
started with. With short selling, for example, the owner of shares sold short
may demand them back; in certain instances, the short seller may have to
liquidate positions in order to meet this demand, regardless of the impact
on the portfolio, having disastrous results if it cannot be met via a liquid-
ity reserve, the sale of assets or an infusion of new capital. In such cases,
lenders and other counterparties may liquidate the portfolio at large losses
to investors.

6.1.2 Advantages of neutral strategies

Because of their ability to deliver returns that are independent of the perfor-
mance of the underlying market, market neutral strategies have often been
thought as “hedges” against market downturns. For this reason, market
neutral strategies are often used as a tool for diversification. When added
to an institution’s existing investment in bonds and stocks, market neutral
portfolios may be able to increase overall return and/or reduce risk. Howev-
er, market neutral strategies have much to offer beyond diversification. For
example, to the extent that they neutralize underlying market risk, these
strategies can be used to exploit profit opportunities in markets that might
otherwise be considered too risky for suitable investment. Neutral struc-
tures can also allow investors to fine-tune portfolio risk exposures and offer
advantages in terms of return enhancement. Most obviously, the ability to
sell securities short enables the investor to seek out opportunities in over-
valued securities, as well as in undervalued ones.

Perhaps the major advantage of market neutral construction is that it allows
the investor to extract the return available from selecting securities in one
asset class and, by using derivatives, to “transport” that return to an entire-
ly different asset class. For example, when fixed-income futures or swaps are
added to a market neutral equity strategy, any excess return available from
the market neutral equity portfolio can be used to enhance a bond market
return. This affords a great deal of flexibility in overall fund management
and, most importantly, it allows the investor to reap the rewards of both
individual security selection and asset class selection.
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6.2 Long-plus-short and integrated neutral portfolios

The combination of a long and a short market portfolio generates the so-
called long-plus-short portfolio. In particular, the excess return on this
combined portfolio equals the excess return due to the short portfolio and
the interest earned on the proceeds from the short sales, increased by the
excess return obtained from the long portfolio. In this sense, the ability to
short, by increasing the investor’s freedom to act on his/her insights, has
the potential to enhance returns from active security selection. This poten-
tial may be especially appealing if short-sale candidates are less efficiently
priced than purchase candidates. Even if this is not the case, however, mar-
ket neutral construction can improve upon the results of long-only portfolio
management.

The improvement offered by market neutral investing depends critically
on the way in which the portfolio is constructed. There are two possible
approaches that now I describe.

e LONG-PLUS-SHORT MARKET NEUTRAL PORTFOLIO

Many investors construct market neutral portfolios by combining a
long-only portfolio, perhaps a preexisting one, with a short-only port-
folio, following a two-portfolio strategy. The long side of this portfolio
is identical to a long-only portfolio, hence it offers no benefits in terms
of incremental return or reduced risk. Furthermore, by assuming no
greater inefficiencies on the short side, the short side of this portfolio
is then statistically equivalent to the long one and hence equivalent
to the long-only portfolio. These relations reflect the fact that all
these portfolios, the long-only portfolio and the long and short com-
ponents of the long-plus-short portfolio, are constructed relative to a
benchmark index. Each portfolio is active in pursuing excess return
relative to the underlying benchmark only insofar as it holds securities
in weights that depart from their benchmark weights. However, de-
partures from benchmark weights introduce residual risk. Controlling
portfolio risk thus involves balancing expected excess (to benchmark)
returns against the added risk they introduce. In this balancing act,
investors face the probability of having to forgo some increment of
expected return in order to reduce portfolio residual risk. Thus, this
portfolio construction is benchmark-constrained. In long-plus-short
portfolios, the advantage offered by the flexibility to short is moreover
curtailed by the need to control risk by holding or shorting securities
in benchmark-like weights.
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The performance of the equity portion of the long-plus-short portfolio
is measurable as the long and the short performances in excess of the
underlying benchmark and can be compared to the performance of
the long-only portfolio in order to highlight the differences. To this
end, as a measure for portfolio performances one may consider the
information ratio (IR), i.e. the ratio of excess return to residual risk.
More precisely, denoting with aro, ap and ag the excess returns of
the equity portions of the long-only portfolio, long portfolio and short
portfolio respectively, and letting orp, o and og be the associated
residual risks, the performance of the equity portion of the long-only
portfolio is given by

!
Ry = 2
OLO
and, similarly, the information ratio for the equity portion of the long-
plus-short portfolio is
!
Rpjo = —>
OL+S

where ar4g represents the excess return of the combined portfolio
and or4g is the residual risk. Since this portfolio can be viewed as an
equally weighted two-assets portfolio, its excess return is given by

1 1

ar4+8 = EaL+§aS'

This expression, according to the considerations previously stated,

may be simplified to
Grvs = ar0

since a7, = ag = app. With similar arguments, one can observe that
oo = or, = og. Hence, after simple computations (see, for example,
Cvitanic and Zapaterd (2004) for a detailed derivation), the residual
risk of the equity portion of the long-plus-short portfolio is given by

1
OL+s = \/50%0(1 +pL+s),

where pr+g is the correlation between the excess return of the long
and short sides of the long-plus-short portfolio.

Combining relations and with 6.1, the relative performance of
the two portfolios may be computed and the result is

IRpvs [ 2
IRLo [ 1+pres’
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It may be observed that if pr+g is less than one, the long-plus-short
portfolio will enjoy greater diversification and reduced risk relative
to a long-only portfolio, for an improvement in IR. However, a long-
only portfolio can derive a similar benefit by adding a less than fully
correlated asset with comparable risk and return, so this is not a ben-
efit unique to long-short. The long-only portfolio can also engage in
leverage, just like the long-plus-short portfolio (however, a long-only
portfolio would have to borrow funds to achieve leverage, and this can
have tax consequences for otherwise tax-exempt investors; borrowing
shares to sell short does not result in unrelated business taxable in-
come). Furthermore, derivatives such as index futures contracts can
be used to make the long-only portfolio market neutral, just like the
long-short portfolio. Thus neither market neutrality, nor leverage,
nor even shorting constitutes an inherent advantage over long-only
portfolio construction.

INTEGRATED MARKET NEUTRAL PORTFOLIO

This strategy represents an integrated optimization that considers
both long and short positions simultaneously according to a one port-
folio strategy that takes into account the expected returns of the in-
dividual securities, the standard deviations of those returns and the
correlations between them as well as the investor’s tolerance for risk.
This approach frees the investor from the nonnegativity constraint
imposed on long-only portfolios and, at the same time, frees the mar-
ket neutral portfolio itself from the restrictions imposed by securities’
benchmark weights. In fact, once an underlying benchmark has been
used to determine the systematic risks of the candidate securities, its
role in market neutral construction is effectively depleted. The off-
setting market sensitivities of the aggregate long and aggregate short
positions eliminate market sensitivity and the need to consider bench-
mark weights in establishing security positions. The investor is not
constrained to moving away from or toward benchmark weights in or-
der to pursue return or control risk. Rather, capital can be allocated
without regard to securities’ weights in the underlying benchmark, as
offsetting long and short positions are used to control portfolio risk.
For example, to establish a 1% overweight or a 1% underweight, the
investor merely has to allocate 1% of capital long or allocate 1% of
capital short.

Rather than being measurable as long and short performance in excess
of an underlying benchmark, the performance of the equity portion of
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the integrated portfolio is measurable as the overall return on the long
and short positions, or the spread between the long and short returns,
relative to their risk. Compared with the excess return/residual risk of
long-only management, this performance should be enhanced by the
elimination of benchmark constraints, which allows the market neutral
portfolio increased flexibility to implement investment insights, both
long and short.

6.3 Evolutionary algorithms for portfolio optimization

In the previous chapters I have described models and procedures through
which T exploit the capabilities of evolutionary algorithms to select/extract
information for predicting financial time series, such as stocks, sectors and
indices. In these pages I want to explain another attracting characteristic
of evolutionary computations: their usefulness to seek an optimal parame-
ter configuration for a model in an optimization problem. In the literature,
for example, Emamd&:ﬂodnguﬁz_@_aﬂ @Dﬁ) investigate the profitabili-
ty of the generalized moving average trading rule for the General Index of
Madrid Stock Market by optimizing parameter values with a genetic algo-
rithm. They concludes that the optimized trading rules are superior to a
risk-adjusted buy-and-hold strategy if the transaction costs are reasonable.
Similarly, [Papadamou and Stephanided ([ZM) present the GATradeTool, a
parameter optimization tool based on genetic algorithms for technical trad-
ing rules. In the description of this software, they compare it with other
commonly used, non-adaptive tools in terms of stability of the returns and
computational costs. Results of the tests on the historical data of a UBS
fund shows that GATradeTool outperforms the other tools.

As a natural consequence of these studies, evolutionary algorithms may con-
stitute a promising tool also for portfolio optimization, where the main goal
is the optimal allocation of funds among various financial assets. An inter-
esting application of evolutionary computations in this field is the approach
developed by Mm (Il)l)j) that leads to the optimization
of portfolio structures by making use of artificial trading experts, previous-
ly discovered by a genetic algorithm (see [Korczak and Rogell M)), and
evolutionary strategies. The approach has been tested using data from the
Paris Stock Exchange. The profits obtained by this algorithm are higher
than those of the buy-and-hold strategy.
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6.4

The GA-Integrated Neutral tool

In the last year, I have developed an evolutionary approach to active port-
folio management, on the basis of practical requirements and suggestions of
financial analysts of Generali Investments and, in particular, the ideas of
Fabrizio Barbini.

The tool builds a portfolio of six assets, according to an integrated neutral
strategy, where the estimates of the future assets’ movements pass through
the judgement of a set of artificial trading experts generated by a genetic
algorithm, hence the name GA-Integrated Neutral tool (shortly GAIN)E'. As
Figure shows, the structure of the GAIN procedure has several steps:

1.

Given the assets, the investor/analyst appoints four financial vari-
ables that are used to predict each assetd. According to this choice,
he/she has to select the lag and the type of transformation these
leading/trading indicators are subject to.

. Once data are collected together, GAIN starts with the generation

of the artificial trading experts that optimize the parameters in each
transformation. To this end, one “factor” at a time is considered
and GAIN is applied to search the parameter values that produce the
highest performance of the integrated neutral strategy, in terms of the
percentage of positive returns achieved by the portfolio over the given
period.

This step may be iterated several times, say N, to obtain a set of
N sub-optimal configurations. Successively, GAIN can be applied to
this optimized population in order to generate a better solution. Fi-
nally, the investor/analyst may control the economic significance of
the parameters and, if they are meaningless, he/she may repeat the
procedure to find other values.

The experts are now collected into a weighted classifier, where the
weights represents the relative importance of each “factor”. Weights
are optimized with a local search procedure, such as exhaustive, sim-
ulated annealing or threshold acceptance, that maximize the absolute
return of the neutral portfolio on the basis of the indications of the
artificial experts.

In this context, for integrated neutral strategy I mean that the investor purchases the
two most promising assets, sells the two worst and is neutral on the rest of the portfolio.

2The four indicators for each asset may be both bottom-up asset-specific fundamentals
and top-down economic fundamentals
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Figura 6.1: GAIN flowchart

The GAIN tool may be very useful as a support for asset allocation in ac-
tive portfolio management mainly because it benefits from the interaction
between practitioners and evolutionary computations during its implemen-
tation and, least but not last, it is a general tool that can be applied to
stocks, bonds and interest rates.

6.5 GAIN tool in a real fund

The GAIN tool is already implemented as a support to management deci-
sions in the Absolute Return Interest Rate Strategies sub-fund of Generali
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Investments. The characteristics of this fund are derived from the web site
www.generali-investments.com:

The Sub-fund will invest mostly in Euro-denominated bonds is-
sued by governments, agencies and supranational entities. Fur-
thermore, the Sub-fund will use interest rate and currency deriva-
tives, both on requlated markets and over the counter, for invest-
ment purposes. The sub-fund is an absolute return fund implying
a low tolerance to risk, a low correlation to markets and to the
main traditional indexes, with the objective to realize an absolute
net performance. The Sub-fund seeks to generate an absolute re-
turn in excess of the EONIA rate by an active asset allocation
into a diversified portfolio of debt related securities and currency
derivatives, taking into account the Investment Manager’s views
on interest rates and yield curves in the main OECD markets. At
any time at least two third of the Sub-fund’s total assets are in-
vested in fized and floating rate government/supranational bonds,
mncluding derivatives on such instruments. The average duration
of the Sub-fund’s portfolio will range from minus 5 years to plus
7 years.

None of the assets of the Sub-fund shall be invested in convertible
bonds, shares and other participation rights in corporate bonds.
The maximum unhedged exposure to currencies other than Euro
will not exceed 30% of the Sub-fund’s net assets.

The benchmark of the portfolio is the EONIA rate.

Figure displays the performance of the fund, relative to its benchmark
for the period from 1 July 2008 to 13 January 2009. It can be shown that
from the beginning of July the fund has yielded more than the EONIA
rate (4285 bps), with a total return of 4.83% (9.18% as annualized return)
and a risk-profile (1.50%) less than that of the 2-year bund (2.40%). These
results, in general, demonstrate that the application of both qualitative and
quantitative tools may considerably improve the portfolio management.
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