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1 Introduction

It has been well documented that both the equity returns and variances are random over

time, and they are negatively correlated, see e.g., French, Schwert and Stambaugh (1987).

Portfolio managers with long positions on equity are concerned that volatility will increase,

which is correlated with negative equity returns. They would seek an asset that has positive

payoffs when volatility increases in order to hedge against this risk. When investing in a

volatility3 sensitive security such as stock index options or options portfolios, an investor

faces not only return variance risk, but also the (leveraged) stock price risk. To trade views

on volatility, or to manage variance risk, it is important for investors to trade volatility

directly.

Roughly speaking, there are two ways to trade views on volatility or manage volatility

risk. One way to trade volatility is to buy ATM options or straddles. But options or

straddles do not always stay at-the-money. Out-of-money or in-the-money options has

smaller Vega or volatility sensitivity, which, as observed in Zhu and Avellaneda (1998),

will not satisfy investor’s need for volatility risk management because there may not be

enough volatility to buy when market goes down. In addition, options bundle volatility risk

together with price risk, which makes it inefficient and inconvenient to manage volatility

risk.

Another way to trade volatility is to use the over-the-counter variance swap market. The

corresponding volatility of a variance swap rate is usually called variance swap volatility

(VSV). As observed in Derman (1998), variance swap can be priced without making any

assumption on the evolution of the volatility process. In fact, the variance swap can be

statically replicated by a portfolio of options, plus a dynamic hedging position in underlying

futures. The value of VSV is directly linked to the value of a portfolio of options. Due

3For convenience, in this article, we use variance and volatility interchangeably, with an understanding
that volatility is the square root of the corresponding annualized variance.
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to its model independent nature, and its clear economic meaning, the VSV has become a

benchmark for analyzing options in general and volatility skew in particular.

On September 22, 2003, CBOE started to publish the 30 day VSV on S&P 500 index

(SPX) options, under symbol VIX, and back-calculated the VIX up to 1990 based on

historical option prices. The detailed calculation formula is based on the value of an option

portfolio.4 On March 26, 2004, the CBOE launched a new exchange, the CBOE Futures

Exchange (CFE) to start trading futures on VIX. The CBOE is now developing a volatility

derivative market by using the VIX as the underlying.

Most of the current literature on volatility derivatives focus on the pricing under risk-

neutral probability of variance, taking a stochastic volatility model as starting point, see

Howison, Rafailidis, and Rasmussen (2004) and the references therein. This approach dis-

connects the options market and volatility derivatives market. In particular, the correlation

between variance and the price process does not enter the pricing formula. On the other

hand, our model is based on arbitrage argument between options market and pure volatil-

ity derivatives market. The contribution of this paper is to derive an arbitrage-free pricing

model based on the corresponding options market. In other words, the model precludes

arbitrage opportunity between options market and pure volatility and its derivatives mar-

ket. The assumption of the theory is the effective integration between these two markets.

The risk premium thus implied from the options market depends on the volatility skew

of the market. This is the most important feature in our model. Our model answers the

important question of how volatility skew of options market affects the price of volatility

derivatives. It has been well documented in empirical literature that the variance risk pre-

mium in S&P 500 index is negative due to negative correlation between the index return

and implied volatility, e.g. Bakshi, Cao, Chen (1997), and Bakshi and Kapadia (2003).

Therefore, the risk neutral stochastic volatility drift term thus implied from index options

4Refer to the CBOE VIX white paper.
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market should have correlation information coded in.

The theory draw strong similarity from arbitrage-free interest rate term structure mod-

els. Due to the simple economic meaning of variance swap rate, one can obtain arbitrage-

free variance term structure from the corresponding options market. If the options market

is complete, in the sense that there exists one call option on any combination of strike price

and time to maturity, then the arbitrage-free variance term structure is unique. We note

that even if the options market is complete, one still need additional information on the

variance of variance to model other volatility derivatives, for example, the OTC volatility

swaps, the exchange traded VIX futures, or potential product such as options on VIX. How-

ever, due to the incompleteness of the options market, there are infinitely many variance

term structures that can be implied by the options market. Similar to interest rate term

structure modelling, one needs an interpolation model or dynamic model to “complete”

the market. We propose to use Weighted Monte Carlo method (WMC) to infer a unique

forward variance term structure from options market. The method is well documented

in Avellaneda, et al (2000). The attractive feature of WMC application in variance term

structure model is that it combines historical volatility time series information with the

current options market information. As widely experienced in interest rate term structure

modelling, the proper combination of the arbitrage-free and equilibrium approaches is an

important part of the art of term structure modelling.

Dupire (1993) attempted to develop an HJM type arbitrage volatility model, where

it starts from an assumption on forward variance swap rate term structure, and derives

arbitrage-free instantaneous volatility dynamics. In our paper, we take another route. We

start from a process for instantaneous volatility. With a variance term structure derived

from options market, we derive the no arbitrage drift term. We believe that our approach

is more practical because instantaneous volatility has been the object of interest for many

popular stochastic volatility model so far. In addition, instantaneous volatility time series
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is more readily available than that of forward variances. Our model is similar to a family

of single factor short-term interest rate term structure model, such as Ho-Lee model (1986)

and Hull and White (1990).

Although the model is presented in a single factor formulation, it can be easily gen-

eralized to multi-factor model. In fact, as the time series study of FX options market

documented in Zhu and Avellaneda (1998), the FX volatility term structure can be well

approximated by a three factor model. In terms of pricing, similar to a vast literature on

interest rate derivatives pricing, the number of factors to be included should be determined

by the applications at hand. In a previous research, Zhang and Zhu (2005) has documented

the need to include an additional factor to fit the observed VIX futures prices. Our paper

shows that, without an additional factor, we can also fit the VIX futures price by including

a deterministic time-varying mean reversion level of instantaneous variance.

The rest of the paper is structured as follows. In section 2, we derive the arbitrage-free

pricing model for volatility derivatives in general, based on market observed option prices.

As an important application, we derive an arbitrage-free pricing model for VIX futures.

Section 3 we show how to calibrate variance term structure to options market by using

WMC method. Based on this term structure, we are able to price the VIX futures. We

make comparison with previous research with popular stochastic volatility model, and show

that with this model, we can not only capture the level of variance term structure, but also

the shape of the term structure. We draw discussion and conclusion in section 4.

2 Arbitrage Pricing Model for Volatility Derivatives

The basic building block of an arbitrage pricing model for volatility derivatives is the

variance swap. Assume the stochastic differential equation followed by the stock or stock
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index of which the volatility is being modelled as:

dSt

St

= µtdt +
√

VtdB1
t (1)

where the B1
t is a standard Brownian Motion. By Ito’s lemma,

d ln St =
dSt

St

−
√

Vt

2
dt, (2)

which, integrated between T1 and T2, yields

ln ST2 − ln ST1 =

∫ T2

T1

dSt

St

− 1

2

∫ T2

T1

Vtdt, (3)

which we can rewrite as
∫ T2

T1

Vtdt = 2

∫ T2

T1

dSt

St

− 2(ln ST2 − ln ST1). (4)

The stochastic integral
∫ T2

T1

dSt

St
can be interpreted as a self-financing strategy of the

underlying stock, and the payoff of ln ST is the so-called log contract. As first observed

by Breeden and Litzenberger (1978), the log contract can be exactly replicated by a con-

tinuum of European options, which can be approximated by a discrete set of European

options. CBOE chose to use only market traded options as discrete approximation of exact

replication of log contract. In this sense, CBOE’s methodology is the same as log contract

replication. In this paper, we use WMC to generate option prices to replicate log contract

on a continuum of expiration dates and strike prices.

2.1 Term Structure of Instantaneous Variance

From above discussion, with the price of log contract denoted as LT (t), i.e.,

LT (t) = EQ
t (ln ST ) ,

where Q is the risk-neutral probability measure, we can define the forward variance from

T1 to T2 observed at time t as

V T2
T1

(t) =
1

T2 − T1

EQ
t

(∫ T2

T1

Vtdt

)
= 2(r − q)− 2

LT2(t)− LT1(t)

T2 − T1

, (5)
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where r and q are interest rate and dividend yield. When taking the limit T2 → T1 = T ,

we get the instantaneous forward variance observed at time t defined as follows.

Definition 1. The instantaneous forward variance VT (t) as observed at time t is defined

as

VT (t) = lim
T2→T1=T

V T2
T1

(t) = EQ
t

(
lim

∆T→0

1

∆T

∫ T+∆T

T

Vsds

)
= EQ

t (VT ). (6)

Based on the above definition, the instantaneous variance Vt = limT→t VT (t). Note that

the instantaneous forward variance is similar to the instantaneous forward rate in term

structure literature, while the instantaneous variance is similar to the instantaneous short

term interest rate. Based on the above definition, we proceed with the arbitrage-free model

of volatility derivatives.

2.2 The One-factor Arbitrage-free Pricing Model

Given the instantaneous variance term structure VT (0) observed at time t = 0, assume

some smoothness condition, we have the relationship between instantaneous variance curve

and the mean-reversion level of instantaneous variance.

Proposition 1. If the risk-neutral instantaneous volatility follows a square root process,

i.e.,

dVt = κ(θ(t)− Vt)dt + σ
√

VtdWt, (7)

then the no arbitrage condition requires that

θ(T ) = VT (t) +
dVT (t)

κdT
, (8)
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where VT (t) is the instantaneous forward variance term structure at time t. Or

VT (t) = Vte
−κ(T−t) + κ

∫ T

t

e−κ(T−s)θ(s)ds. (9)

The implication of the proposition is that, if variance is stochastic and follows a Heston

model, the forward variance can be calibrated (assuming a time-dependent, non-stochastic

risk premium) by modifying the drift of the volatility process. The risk premium thus

implied from the options market depends on the volatility skew of the market. This is the

most important feature of the arbitrage model. Currently, most of the other literature on

volatility derivative pricing (Howison, Rafailidis, and Rasmussen, 2004) starts from risk-

neutral volatility process. This approach disconnects the options market and volatility

derivatives market. In particular, the correlation between variance and the price process

does not enter the pricing formula. On the other hand, our model is based on arbitrage

argument between options market and pure volatility derivatives market, which is well

positioned to answer the important question of how volatility skew of options market affects

the price of volatility derivatives. It has been well documented in empirical literature that

the variance risk premium in S&P 500 index is negative due to negative correlation between

the index return and implied volatility, e.g. Bakshi, Cao, Chen (1997), and Bakshi and

Kapadia (2003). Therefore, the risk neutral stochastic volatility drift term thus implied

from index options market should have correlation information coded in.

Before proceeding, let’s state two properties of the risk neutral drift of the stochastic

variance.

Corollary 1. If the instantaneous forward variance term structure has the form of

VT (0) = θ0 + θ1e
−κT for some constants θ0 and θ1, we obtain flat mean reversion level

θ(t) = θ0. In particular, if the instantaneous forward variance VT (0) = V0 is flat, We have
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θ(T ) = V0.

Corollary 2. When the speed of mean reversion is large, i.e., κ À 1, then θ(T ) ≈ VT (0).

By option prices only, we can only retain the relationship between κ and θ(t). In fact,

there is a more general relationship if we drop the assumption of constant mean reversion

rate κ. In a more general case, we have κ(t)θ(t) = κ(t)Vt(0) + dVt(0)
dt

. In order to obtain κ

and θ, one need to have a specific form of risk premium, as well as historical time series

model for instantaneous variance Vt. For purpose of parameter estimation, we make the

following assumptions on the physical process for Vt and the variance risk premium:

1. The physical process of Vt follows Heston’s model:

dVt = κ(θ0 − Vt)dt + σV

√
VtdWt (10)

2. The risk premium is postulated as a function of time only, namely,

λ(t)σV

√
Vt = κ(θ0 − θ(t)) (11)

Note that this is in contrast to standard specification for risk premium as λ
√

Vt, e.g.,

Heston (1993). With this specification, the mean reversion speed parameter κ can be

estimated from the physical process. We use maximum likelihood estimation for parameter

estimations. Interested readers should refer to Appendix for details.

With the calibration of instantaneous forward variance term structure, we develop an

arbitrage-free model for VIX futures. Any arbitrage-free model has to observe the current

market prices. In VIX futures pricing, one needs to price the current options market

correctly. In our setting, we require the model to be able to price the current forward

variance curve correctly.
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2.3 VIX Futures Pricing

Under risk-neutral probability measure, the SPX and variance dynamics can be written as:

dSt

St

= (r − q)dt +
√

VtdB1(t), (12)

dVt = κ(θ(t)− Vt)dt + σV

√
VtdB2(t), (13)

where θ(t) is obtained by options market.

The relation between V IX2
t and Vt can be derived from the definition of VIX,

V IX2
t = EQ

t

[
1

τ0

∫ t+τ0

t

Vsds

]
, (14)

where τ0 is 30 calendar days. We have the following result for VIX squared.

Proposition 2. With instantaneous variance Vt given by (7), the VIX squared value at

time t is given by

V IX2
t = A + BVt, (15)

where

A =
1

τ0

∫ τ0

0

(1− e−κ(τ0−τ))θ(t + τ)dτ, (16)

B =
1− e−κτ0

κτ0

, (17)

and τ0 = 30/365.

To price VIX futures, we need to find the conditional probability density function

fQ(VT |V0). With the instantaneous variance process following the SDE given by equa-

tion (13), the corresponding risk-neutral probability density fQ(VT |Vt) can be determined.

Since

EQ
t (euVT ) = eα(t,u)+β(t,u)Vt , (18)
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where α(t, u) and β(t, u) are given by:

β(t, u) =
κue−κ(T−t)

κ− 1
2
σ2u(1− e−κ(T−t))

, (19)

α(t, u) = κ

∫ T

t

θ(s)β(s, u)ds (20)

The characteristic function of the risk-neutral instantaneous variance is

EQ
t (eiφVT ) = eα(t,iφ)+β(t,iφ)Vt . (21)

Denote θ̄ = 1
T−t

∫ T

t
θ(s)ds, We have the following proposition for the risk-neutral density

function fQ(VT |Vt).

Proposition 3. With condition

κθ̄ >
1

2
σ2, (22)

the risk-neutral probability density function fQ(VT |Vt) is well defined by the following invert

transformation of its characteristic function given by (21) as follows:

fQ(VT |Vt) =
1

π

∫ ∞

0

Re
[
e−iφVT +α(t,iφ)+β(t,iφ)Vt

]
dφ (23)

with α and β given by (20) and (19).

With constant θ(t), we get the standard non-central χ-square distribution (Cox, Inger-

soll, and Ross 1985).

Proposition 4. The VIX futures with maturity T is priced as

FT (0) = EQ
0 (V IXT ) =

∫ +∞

0

√
A + BVtf

Q(VT |V0)dVT , (24)

where A and B are given by (16, 17), and fQ(VT |Vt) is given by (23).
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For proof of the above propositions, we refer interested readers to the Appendix. When

θ(t) becomes constant, we get the case studied in Zhang and Zhu (2005).

In the next section we first calibrate the forward variance curve with options data by

WMC method. Using the resulted risk-neutral process we price the VIX futures.

3 The VIX Futures Market Data and Calibration

3.1 Market Data and Calibration Methodology

WMC is a general non-parametric approach developed for calibrating Monte Carlo models

to benchmark security prices. It has been used to options market to price volatility skew-

ness, e.g., Avellaneda et al, 2000. WMC starts from a given model for market dynamics,

which is usually the empirical probability measure, the prior. Model calibration is done by

assigning different weights to the paths generated by the prior probability. The choice of

weights is done by minimizing the Kullback-Leibler relative entropy distance of the pos-

terior measure to the prior measure. In this way, we get the risk-neutral measure that is

consistent with the given set of benchmark securities. Generally speaking, in an incom-

plete market, there are an infinite number of such probability measures that fit the market.

WMC is a method prescribed to find among the feasible set of probability measures that

is “closest” to the prior measure.

As discussed in Avellaneda, et al 2000, the procedure of WMC is as follows:

1. Generate ν paths by Monte Carlo based on the prior measure P .

2. For N benchmark securities, compute cashflow Gj for each of the N securities, with

market prices Cj, j = 1, ..., N . By optimize

Minq1,...,qνD(q|p) (25)

s.t.EQ(Gj) = Cj (26)

where D(q|p) =
∑ν

i=1 qi ln( qi

pi
) is the Kullback-Leibler relative entropy distance from prob-
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ability measure Q to P .

3. Using the obtained “risk-neutral” probability Q to price other derivative securities.

Specifically, we use Heston model (Stephen Heston, 1993) as the prior. We use a novel

Maximum Likelihood estimation method to estimate the parameters. The MLE estimation

details are presented in the Appendix. We take full advantage of the historical time series

of VIX published by CBOE from 1990 to 2005, and the S&P 500 index level to estimate

the instantaneous variance time series.

As example, we use S&P 500 index options price and corresponding VIX futures price

on March 10, 2005. To fit the variance term structure, we use OTM options only, because

VIX is being calculated using OTM options. In addition, we use options with maturity

between 30 days and 1 year, which is the range of maturity the VIX futures are traded. We

choose trading volume bigger than 1000 contracts. There are 35 puts and calls chosen to

fit the term structure. The options used to calibrate the variance term structure is listed

in Table 2.

3.2 Variance Term Structure Calibration using WMC Method

Use WMC, we fit the market prices of options to obtain the forward variance term structure.

The fitted instantaneous forward variance term structure is presented in Figure 1. We have

converted the variance to volatility for comparison.

The corresponding risk-neutral mean reversion level for the instantaneous variance

process, θ(t) is presented in Figure 2.

3.3 Pricing VIX Futures

Using the calibrated model, we get the price for the VIX futures series on March 10, 2005, as

in Table 1. Model price corresponds to the fitted model with time varying mean-reverting

level θ(t). Model1 and Model2 corresponds to constant mean-reverting level of 0.027 and
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0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165
Instantaneous Volatility Term Structure

Time (in days)

Figure 1: Instantaneous forward Volatility Term Structure fitted from S&P 500 index
options market prices on March 10, 2005, by WMC. Note that the empirical long term
mean-reversion level of the instantaneous variance is 17%2 = 0.0299. And the VIX level on
March 10, 2005 is 12%. The empirical mean-reversion half life is 2 to 3 months.

0.024, respectively. The market and model comparison is also presented in Figure 3. We

can see that the varying mean reversion model captures the market prices better than

Heston model with constant mean reversion level.
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0.02

0.021

0.022

0.023

0.024

0.025

0.026

0.027

Time (in Days)

Aribitrage−free mean−reversion level

Figure 2: θ(t) or the risk-neutral mean-reversion level derived from volatility term structure
on March 10, 2005. Note that θ(t) increase from 14.5%2 = 0.021 to 16.4%2 = 0.027. This
better fits the market for VIX futures than constant long term mean. The ruggedness is
due to the differentiation with respect to term T in equation (8). The first order derivative
is taken after linear smoothing.

4 Conclusion

We have developed an arbitrage-free pricing model for volatility derivatives, in particular,

we price VIX futures using the derived model. We show that in order to exclude arbitrage

opportunity between options market and corresponding volatility derivatives market, the

drift term of risk-neutral process of instantaneous variance cannot be determined arbitrarily.

In particular, the drift term (or equivalently, the form of risk premium implied therein) can

be uniquely determined by the forward variance curve. We use WMC method to calibrate

the variance term structure for S&P 500 index options market, and priced the VIX futures

based on the derived arbitrage-free model. We show that the shape of the variance term

structure has major impact on VIX futures pricing. Further research will involve alternative

method or improved WMC method to derive variance term structure from options market.
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Maturity (Days) Market Price Model Price Model1 Model2
VIX/H5 6 127.4 126.3 127.3 126.3
VIX/K5 69 135.5 136.1 144.9 138.2
VIX/Q5 160 140.2 144.4 154.0 145.1
VIX/X5 251 151.0 152.5 156.6 147.1

MSE 2.32 8.81 3.45

Table 1: Model Price corresponds to the fitted market. Model price corresponds to the
fitted model with time varying mean-reverting level θ(t). Model1 and Model2 corresponds
to constant mean-reverting level of 0.027 and 0.024, respectively. Mean Squared Error is
calculated for each model with respect to market price. The pricing error of the constant
mean reversion models cannot be reduced due to the rigidity of corresponding variance
term structure.

Furthermore, variance term structure of other index options as well as empirical studies on

variance term structure will be interesting for the derivatives market on VIX that is being

developed.
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Figure 3: Model v.s. market. Model price corresponds to the fitted model with time
varying mean-reverting level θ(t). Model1 and Model2 corresponds to constant mean-
reverting level of 0.027 and 0.024, respectively. Mean Squared Error is calculated for each
model with respect to market price. The pricing error of the constant mean reversion
models cannot be reduced due to the rigidity of corresponding variance term structure.

Appendix

A Proof of Proposition 1, 2 and 3

With instantaneous variance given by equation (7), the instantaneous forward variance at

time T , VT (0) = E0(VT ). By taking expectation of (7),we have

E0(VT ) = e−κT V0 + κ

∫ T

0

e−κ(T−t)θ(t)dt (27)

Multiply the above by eκT and differentiate by T , we get the result of Proposition 1.

To prove Proposition 3, integrate equation (27)with respect to T , using integration by

part, we get the result for A and B. VIX futures pricing formula follows directly from

definition.

To prove Proposition 2, with instantaneous variance given by equation (7),define

P (Vt, t) = EQ
t

[
euVT |Vt

]
(28)
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which satisfies the following backward PDE

∂P

∂t
+ κ(θ(t)− V )

∂P

∂V
+

1

2
σ2V

∂2P

∂V 2
= 0 (29)

with the terminal condition

P (V, t = T ) = euV . (30)

Postulate a solution for P as P (V, t) = eα(t,u)+β(t,u)V . Substitute into (29), and arrange

terms, we get the following ODE:

β̇(t, u) = κβ(t, u)− 1

2
σ2β(t, u) (31)

α̇(t, u) = −κθ(t)β(t, u) (32)

with the initial (terminal) condition β(T, u) = u, α(T, u) = 0. Solving for the above ODE

we get the characteristic function of probability density of Vt.

To prove the existence condition (22), observe that when θ(t) is constant, we get the

solution for α and β as follows:

β(t, u) =
κue−κ(T−t)

κ− 1
2
σ2u(1− e−κ(T−t))

(33)

α(t, u) = − 2

σ2
κθ ln

[
1− σ2u

2κ
(1− e−κ(T−t))

]
(34)

With the condition defined by (22), we have

lim
φ→∞

β(t, iφ) = −C0 (35)

lim
φ→∞

|α(t, iφ)| = ln(C1iφ)−
2κθ
σ2 (36)

where C0 and C1 are positive real constants.

Therefore, when θ(t) a time dependent deterministic function, there exists a constant

C2 such that (20) can be approximated as

|α(t, iφ)| < C2 + κθ̄

∫ T

t

β(s, iφ)ds (37)
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Hence, we have

|α(t, iφ)| ≤ ln(C3iφ)−
2κθ̄
σ2 (38)

for some constant C3. We proved the existence condition (22).

B MLE and Probability Density Function

Let xt = ln(St), from Ito’s Lemma we have

dxt = (µ− 1

2
Vt)dt +

√
VtdB1(t), (39)

dVt = κ(θ − Vt)dt + σV

√
VtdB2(t), (40)

with E [dB1(t)dB2(t)] = ρdt. (Z1(t), Z2(t))as standard Brownian Motion, we can write

dB1(t) =
√

1− ρ2dZ1(t) + ρdZ2(t), dB2(t) = dZ2(t), (41)

Substitute (41) into (40), we get
√

VtdZ2(t) = 1
σV

(dVt − κ(θ − Vt)dt) and substitute into

(39), we have

dx(t) = (µ− 1

2
Vt)dt +

ρ

σV

(dVt − κ(θ − Vt)dt) +
√

1− ρ2
√

VtdZ1(t) (42)

We wish to evaluate the transition density P [(xδ, Vδ)|(x0, V0)],where δ is the time be-

tween consecutive observations. We take advantage of Bayes’ Rule, and the fact that Vt is

itself a markov process, to obtain

P [(xδ, Vδ)|(x0, V0)] = P [xδ|x0, V0, Vδ] P [Vδ|V0] (43)

The conditional distribution of Vt given V0 is a noncentral chi-square with density given by

p(Vδ|V0) = cec(Vδ+e−κδV0)(
Vδ

e−κδV0

)q/2Iq(2c(VδV0e
−κδ)

1
2 ), (44)

where c = 2κ(1− e−κδ)−1, q = 2κθ − 1, and Iq denotes the modified Bessel function of the

first kind of order q.
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There is no known explicit expression for p(xδ|x0, V0, Vδ). We base an approximation

on the following observation: The distribution of Xδ conditional on X0 and the entire path

of Vt from time 0 to time δ has a known normal density

p(xδ|x0, Vs, s ∈ [0, δ]) = φ(xδ,mδ, V̄δ) (45)

where φ(·, a, V ) is the density of a normal random variable with mean a and variance V ,

and

mδ =

∫ δ

0

(µ− 1

2
Vt)dt +

ρ

σV

∫ δ

0

dVt − ρ

σV

∫ δ

0

κ(θ − Vt)dt + x0 (46)

V̄δ = (1− ρ2)

∫ δ

0

Vtdt (47)

By the law of iterated expectations,

p(xδ|x0, V0, Vδ) = E [p(xδ|x0, Vs, s ∈ [0, δ])|x0, V0, Vδ] = E [φ(xδ,mδ, v̄δ)] , (48)

To complete the specification of the conditional density function of the state variables

amounts to approximating the expectation in (48). It has been shown in ([10]) that one

can approximate p(xδ|x0, V0, Vδ) as the conditional density of xδ given Vs, evaluated at an

outcome of the path of Vs that is linear between V0 and Vδ. This approximation is tractable

and accurate for our application.

C MLE Estimation Results

The ML estimation result is as follows:

κ θ σV λ ρ µ
Estimate 5.2952 0.0299 0.3837 -12.0644 -0.6413 0.0370
Stddev 0.4424 0.0025 0.0067 0.6644 0.0085 0.0220

The risk premium is strongly negative, while the stock index return µ is not signifi-

cantly different from zero. This is because most of the return has been explained by the
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movement correlated with volatility process. The strongly negative risk premium is due to

the short term nature of the variance swap rate of VIX. This is a well documented fact that

short term skewness of option prices cannot be adequately explained by diffusive volatility

alone. For example, adding jumps will reduce greatly the stochastic volatility risk premium.

In our WMC application, however, risk premium is determined in a non-parametric way

by incorporating all the input information of options data. Therefore, only the physical

parameters are used.

D Options Data

We present the options data we used for WMC calibration:
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Exp (Days) Strike Type Price Volume

37 1220 Call 12.5000 1353
37 1225 Call 9.8000 1928
37 1230 Call 8.0000 1176
37 1250 Call 3.1000 2307
37 1275 Call 0.9500 4557
37 1120 Put 1.7500 1504
37 1125 Put 1.8000 1627
37 1150 Put 3.4000 4456
37 1170 Put 7.1000 1257
37 1175 Put 6.2000 2028
37 1180 Put 7.8000 1098
37 1200 Put 12.5000 6524
72 1225 Call 17.0000 1131
72 1275 Call 3.8000 1039
72 1050 Put 1.5000 1000
72 1150 Put 8.0000 1020
100 1215 Call 29.0000 3730
100 1100 Put 5.5000 1274
100 1150 Put 12.2000 1554
100 1175 Put 16.9000 1370
100 1200 Put 24.8000 1281
100 1215 Put 30.0000 4239
191 1325 Call 7.0000 2502
191 1075 Put 10.6000 4201
191 1100 Put 13.2000 1370
191 1125 Put 17.4000 1050
282 1250 Call 39.7000 1275
282 1350 Call 10.0000 1255
282 750 Put 0.9000 2640
282 850 Put 2.2500 20000
282 1025 Put 9.8000 1200
282 1050 Put 12.5000 1000
282 1075 Put 15.5000 1750
282 1175 Put 35.0000 2100
282 1200 Put 43.2000 1268

Table 2: The market options data as selected by the criteria described in the paper, are
given as follows. The S&P 500 spot market S0 = 1209.3.


