Scienza & Tecnologia

Ciao Franky, visto che segui questi argomenti, puoi dirmi in poche parole perché per andare su Marte vogliono fare base sulla Luna?
Ci sono da testare varie tecnologie prima di andare su Marte...per la produzione di acqua, sia raccogliendola dai crateri in ombra che producendola in loco, per la coltivazione di specie vegetali per il sostentamento e rigenerazione dei rifiuti organici, sistemi di produzione e immagazzinamento di propellente, per lo sfruttamento di materiali minerari, regolite in primis per la produzione di cemento, materiali e ambienti per la protezione dalle radiazione sia a lungo termine che dei flares solari...e chissà quanto altro ancora. Il tutto implementando alti livelli di automazione e al di fuori della protezione offerta dal campo magnetico terrestre.
 
Ci sono da testare varie tecnologie prima di andare su Marte...per la produzione di acqua, sia raccogliendola dai crateri in ombra che producendola in loco, per la coltivazione di specie vegetali per il sostentamento e rigenerazione dei rifiuti organici, sistemi di produzione e immagazzinamento di propellente, per lo sfruttamento di materiali minerari, regolite in primis per la produzione di cemento, materiali e ambienti per la protezione dalle radiazione sia a lungo termine che dei flares solari...e chissà quanto altro ancora. Il tutto implementando alti livelli di automazione e al di fuori della protezione offerta dal campo magnetico terrestre.

Grazie della risposta. In effetti avevo capito male credendo che volessero partire dalla Luna per andare su Marte. Giusto che vogliano fare esperienza prima di affrontare Marte.
 
Grazie della risposta. In effetti avevo capito male credendo che volessero partire dalla Luna per andare su Marte. Giusto che vogliano fare esperienza prima di affrontare Marte.
Anche io avevo sentito che sarebbe più facile partire dalla Luna per via della gravità minore.
 
Anche io avevo sentito che sarebbe più facile partire dalla Luna per via della gravità minore.
In realtà non si utlizzerà la Luna per partire alla volta di Marte ma il Lunar Gateway cioè la stazione spaziale in orbita attorno alla Luna di prossima costruzione (2024) che oltre a svolgere una funzione di servizio per la base lunare servirà anche come trampolino o attracco temporaneo per raggiungere Marte.

 
Artemis I – Flight Day 22: Orion Continues on its Journey Back to Earth

art001e002162-1024x809.jpg

(Dec. 5, 2022): Cameras mounted on the crew module of the Orion spacecraft captured these views of the Moon’s surface. On flight day 20 of the Artemis I mission, the spacecraft made its second and final close approach to the Moon before its returned powered flyby burn.


Orion continues its journey back to Earth on day 22 of the 25.5-day Artemis I mission with flight controllers and engineers continuing to test the spacecraft and its systems in preparation for future flights with humans aboard.


Engineers conducted the second part of the propellant tank slosh development flight test, called propellant slosh, which is scheduled during quiescent, or less active, parts of the mission. Propellant motion, or slosh, in space is difficult to model on Earth because liquid propellant moves differently in tanks in space than on Earth due to the lack of gravity.


The test calls for flight controllers to fire the reaction control system thrusters when propellant tanks are filled to different levels. The reaction control thrusters used are located on the sides of the service module and can be fired individually as needed to move the spacecraft in different directions or rotate it into any position. Each engine provides about 50 pounds of thrust Engineers measure the effect the propellant sloshing has on spacecraft trajectory and orientation as Orion moves through space.


The test was first performed after the outbound flyby burn, and now again after the return flyby burn, to compare data at points in the mission with different levels of propellant onboard. Approximately 12,060 pounds of propellant has been used, which is 215 pounds less than estimated prelaunch, and leaves a margin of 2,185 pounds over what is planned for use, 275 pounds more than prelaunch expectations. The first prop slosh test objective was completed on day eight of the mission as it prepared to enter the distant retrograde orbit.


A few key milestones for Orion remain, including the entry system check outs and propulsion system leak checks on mission days 24 and 25, respectively.


Orion will travel at around 25,000 mph while reentering Earth’s atmosphere, testing the world’s largest ablative heat shield by reaching temperatures up to 5,000 degrees Fahrenheit – approximately half the heat of the sun. The heat shield is located at the bottom of the Orion capsule, measuring 16.5 feet in diameter, and sheds intense heat away from the crew module as Orion returns to Earth. The outer surface of the heat shield is made of 186 billets, or blocks, of an ablative material called Avcoat, a reformulated version of the material used on the Apollo capsules. During descent, the Avcoat ablates, or burns off in a controlled fashion, transporting heat away from Orion. Learn more about Orion’s heat shield in the Artemis I reference guide.


On Thursday, Dec. 8 at 5 p.m. EST, NASA will host a briefing to preview Orion’s return scheduled for Sunday, Dec. 11 and to discuss how the recovery teams are preparing for entry and splashdown. The briefing will be live on NASA TV, the agency’s website, and the NASA app.


Watch the latest episode of Artemis All Access for a look back at recent mission accomplishments and a preview of splashdown, including parachute information.

 
Artemis I – Flight Day 23: Mission Teams Prepare for Splashdown, Select Landing Site

52551276560_6d6d87b50e_o-1024x768.jpg

(Dec. 7, 2022) The Moon appears smaller from Orion’s perspective on flight day 22 as the Artemis I spacecraft continues distancing itself from our lunar neighbor, over 125,000 miles away in this image.

On flight day 23 of NASA’s Artemis I mission, the Orion spacecraft continues making the return trip to Earth, capturing photos and video along the way.



“At present, we are on track to have a fully successful mission with some bonus objectives that we’ve achieved along the way,” said Mike Sarafin, Artemis I mission manager. “On entry day, we will realize our priority one objective, which is to demonstrate the vehicle at lunar re-entry conditions, as well as our priority three objective, which is to retrieve the spacecraft.”


The mission management team met with the entry flight director and NASA recovery director as the planned splashdown of Orion Sunday, Dec. 11 is now about 72 hours away. They evaluated the weather and decided on a landing site in the Pacific Ocean near Guadalupe Island, south of the primary landing area. Watch the reentry preview briefing for more details.


Later tonight, flight controllers will conduct a final survey of Orion’s crew module and service module using cameras on each of the spacecraft’s four solar arrays. During the crew module inspection, flight controllers will be looking at the back shell made up of 1,300 thermal protection system tiles and will protect the spacecraft from the cold of space and the extreme heat of re-entry.


Just before re-entry, the crew module and service module will separate and only the crew module will return to Earth while the service module burns up in Earth’s atmosphere upon re-entry over the Pacific Ocean. The Artemis I trajectory is designed to ensure any remaining parts do not pose a hazard to land, people, or shipping lanes.


After separating from the service module, the crew module will prepare to perform a skip entry technique that enables the spacecraft to accurately and consistently splash down at the selected landing site. Orion will dip into the upper part of Earth’s atmosphere and use that atmosphere, along with the lift of the capsule, to skip back out of the atmosphere, then reenter for final descent under parachutes and splash down. This technique will allow a safe re-entry for future Artemis missions regardless of when and where they return from the Moon.


Earth’s atmosphere initially will slow the spacecraft to 325 mph, then the parachutes will slow Orion to a splashdown speed in about 10 minutes as it descends through Earth’s atmosphere. Parachute deployment begins at an altitude of about five miles with three small parachutes pulling the forward bay covers away. Once the forward bay cover separates, two drogue parachutes will slow and stabilize the crew module for main parachute deployment. At an altitude of 9,500 feet and a spacecraft speed of 130 mph, three pilot parachutes will lift and deploy the main parachutes. Those 116-foot-diameter parachutes of nylon broadcloth, or “silk,” will slow the Orion crew module to a splashdown speed of 20 mph or less.


The parachute system includes 11 parachutes made of 36,000 square feet of canopy material. The canopy is attached to the top of the spacecraft with more than 13 miles of Kevlar lines that are deployed in series using cannon-like mortars and pyrotechnic thrusters and bolt cutters. Learn more about Orion’s parachute system in the Artemis I reference guide.


NASA TV coverage of Artemis I’s return to Earth begins at 11 a.m. EST on Sunday, Dec. 11. The Orion spacecraft is scheduled to splash down in the Pacific Ocean at 12:40 p.m. near Guadalupe Island.


Just before 6:00 p.m. CST on Dec. 8, Orion was traveling 207,200 miles from Earth and 180,400 miles from the Moon, cruising at 1,415 mph.


Images are available on NASA’s Johnson Space Center Flickr account and Image and Video Library. When bandwidth allows, views of the mission are available in real-time.
 
Artemis I – Flight Day 25: Orion in Home Stretch of Journey

FD-24-Sliver-of-Earth-1024x809.jpg

(Dec. 9, 2022) On flight day 24 of the Artemis I mission, Orion’s optical navigation camera captured this black-and-white photo of Earth as a sliver. Orion uses the optical navigation camera to capture imagery of the Earth and the Moon at different phases and distances, providing an enhanced body of data to certify its effectiveness under different lighting conditions as a way to help orient the spacecraft on future missions with crew.


The Orion spacecraft is on its last full day in space with splashdown off the Baja Coast near Guadalupe Island targeted for 11:39 a.m. CST (12:39 p.m. EST) on Sunday, Dec. 11.


Engineers conducted the final Artemis I in-space developmental flight test objective to characterize temperature impacts on solar array wings from plumes, or exhaust gases. Once the solar array wing was in the correct test position, flight controllers fired the reaction control system thrusters using opposing thrusters simultaneously to balance the torque and test a variety of firing patterns. Engineers will perform several additional flight test objectives after Orion splashes down in the water and before powering down the spacecraft.


The fifth return trajectory correction burn occurred at 2:32 p.m. CST, Saturday, Dec. 10. During the burn the auxiliary engines fired for 8 seconds, accelerating the spacecraft by 3.4 mph (5 feet per second) to ensure Orion is on course for splashdown. The sixth and final trajectory correction burn will take place about five hours before Orion enters Earth’s atmosphere.


On Orion’s return to Earth, NASA’s Tracking and Data Relay Satellite (TDRS) will facilitate communications for the final return trajectory correction burn, spacecraft separation, re-entry through the Earth’s atmosphere and splashdown. Shortly before the service module separates from the crew module, communication will be switched from NASA’s Deep Space Network to its Near Space Network for the remainder of the mission. Located in geosynchronous orbit about 22,000 miles above Earth, TDRS are used to relay data from spacecraft at lower altitudes to ground antennas. During re-entry, the intense heat generated as Orion encounters the atmosphere turns the air surrounding the capsule into plasma and briefly disrupts communication with the spacecraft.


Recovery forces have arrived on location off the coast of Baja where they will stand by to greet the spacecraft after its re-entry back into the atmosphere at 25,000 mph. On the ship, personnel are running through preparations and simulations to ensure the interagency landing and recovery team, led by Exploration Ground Systems from Kennedy Space Center in Florida, is ready to support recovery operations. The team consists of personnel and assets from the U.S. Department of Defense, including Navy amphibious specialists and Space Force weather specialists, and engineers and technicians from Kennedy Space Center in Florida, Johnson Space Center in Houston, and Lockheed Martin Space Operations.


Teams will recover Orion and attempt to recover hardware jettisoned during landing, including the forward bay cover and three main parachutes. A four-person team of engineers from Johnson will be aboard the U.S. Navy recovery ship using “Sasquatch” software to identify the footprint of hardware released from the capsule. The primary objective for the Sasquatch team is to help the ship get as close as possible to Orion for a quick recovery. A secondary objective is to recover as many additional elements as possible for analysis later.


Just after 2 p.m. CST Dec. 10, Orion was 113,453 miles from Earth and 239,432 miles from the Moon, cruising at 3,375 miles per hour.   


Live coverage of Orion’s reentry and splashdown will begin at 11 a.m. EST on NASA TV, the agency’s website, and the NASA app. A post-splashdown briefing is scheduled for about 3:30 p.m.


View the latest imagery of the Moon, Earth, and Orion on NASA’s Johnson Space Center Flickr account and Image and Video Library. When bandwidth allows, views of the mission are available in real-time. 
 
Watch Live Now: NASA Television Coverage of Orion’s Return to Earth

KSC-20221209-PH-KLS01_0031_orig-1024x683.jpg

NASA and DoD members of the Artemis I recovery team run practice flight operations procedures aboard the USS Portland (LPD 27). The team is out at sea ahead of the Dec. 11 Orion splashdown in the Pacific Ocean. Credit: NASA/Kim Shiflett


Live coverage is underway on NASA Television, the agency’s website, and the NASA app for Orion’s return to Earth as part of the 25.5 day Artemis I flight test.


The sixth and final return trajectory correction burn occurred at 6:20 a.m. CST Sunday, Dec. 11. During the burn the auxiliary engines fired for 8 seconds, accelerating the spacecraft by .68 mph (.99 feet per second) to ensure Orion is on course for splashdown.


Orion’s crew module will separate from its service module, which is the propulsive powerhouse provided by ESA (European Space Agency), at 11:00 a.m. CST. The crew module will enter the Earth’s atmosphere at 11:20 a.m., and the spacecraft will splashdown with a parachute-assisted landing in the Pacific Ocean off the coast of Baja California at 11:39 a.m.


The Artemis I mission began with a successful liftoff of NASA’s Space Launch System (SLS) rocket Nov. 16, from Launch Pad 39B at NASA’s Kennedy Space Center in Florida. Over the course of flight test, flight controllers have tested Orion’s capabilities in the harsh environment of deep space to prepare for flying astronauts on Artemis II.

Artemis I – Flight Day 26: Orion Crew Module Separation From Service Module Complete


The crew module of NASA’s Orion spacecraft has successfully separated from its service module at 11:00 a.m. CST in preparation for the crew module’s return to Earth. The service module will burn up harmlessly in Earth’s atmosphere upon re-entry over the Pacific Ocean. The Artemis I trajectory is designed to ensure any remaining parts do not pose a hazard to land, people, or shipping lanes.


Next, the crew module will perform a skip entry technique, dipping into the upper part of Earth’s atmosphere and using that atmosphere, along with the lift of the capsule, to skip back out of the atmosphere, then reenter for final descent under parachutes and splash down. This technique enables the spacecraft to accurately and consistently splash down at the selected landing site for Artemis missions regardless of when and where they return from the Moon. During re-entry, the enormous heat generated as Orion encounters the atmosphere turns the air surrounding the capsule into plasma, which will briefly disrupt communications with the spacecraft.


Below are the upcoming re-entry milestones in CST:


11:20:14 p.m. – Crew Module Entry Interface
11:35:28 p.m. – Altitude 40,000 feet
11:36:02 p.m. – Forward Bay Cover Chute Deploy
11:36:06 p.m. – Drogue Chute Deploy
11:37:26 p.m. – Main Chute Deploy
11:39:41 p.m. – Splashdown


Earth’s atmosphere initially will slow the spacecraft to 325 mph, then the parachutes will slow Orion to a safe splashdown speed of 20 mph or less as it descends through Earth’s atmosphere. Parachute deployment begins at an altitude of about five miles with three small parachutes pulling the forward bay covers away. Once the forward bay cover separates, two drogue parachutes will slow and stabilize the crew module for main parachute deployment. At an altitude of 9,500 feet and a spacecraft speed of 130 mph, three pilot parachutes will lift and deploy the main parachutes to slow Orion to a landing speed that ensures astronaut safety for crewed missions.


When Orion splashes down, the crew module uprighting system, also known as CMUS, deploys a series of five bright-orange helium-filled bags on the top of the capsule to upright the capsule in the event it stabilizes upside down. The system will deploy regardless of the landing position of the capsule, and it takes less than four minutes to upright the capsule if needed. The capsule must be upright for crew module communication systems to operate correctly and to help protect the health of the crew members inside on future missions.
 
Artemis I – Flight Day 26: Orion splashes down, concluding historic Artemis I mission

52557401893_d84a1d54c4_o-1-683x1024.jpg

At 12:40 p.m. EST, Dec. 11, 2022, NASA’s Orion spacecraft for the Artemis I mission splashed down in the Pacific Ocean after a 25.5 day mission to the Moon. Orion will be recovered by NASA’s Landing and Recovery team, U.S. Navy and Department of Defense partners aboard the USS Portland ship. Credit: NASA/Kim Shiflett

NASA’s Orion spacecraft successfully completed a parachute-assisted splashdown in the Pacific Ocean at 9:40 PST, 12:40 EST as the final major milestone of the Artemis I mission. Engineers will perform several additional tests while Orion is in the water and before powering down the spacecraft and handing it over to the recovery team aboard the USS Portland.



At the direction of the NASA recovery director, Navy divers and other team members in several inflatable boats will approach the spacecraft. When Orion is ready to be pulled into the ship’s well deck at the waterline, the divers will attach a cable, called the winch line, to pull the spacecraft into the ship and up to four additional tending lines to attach points on the crew module. The winch will pull Orion into a specially designed cradle inside the ship’s well deck and the other lines will control the motion of the spacecraft. Once Orion is positioned above the cradle assembly, technicians will drain the well deck and secure it on the cradle.


Once aboard the vessel, teams will take the spacecraft to U.S. Naval Base San Diego and soon return it to NASA’s Kennedy Space Center for inspection. Technicians in Florida will thoroughly inspect Orion, retrieving data recorded on board, removing onboard payloads, and more.


Artemis I was the first integrated test of NASA’s deep space exploration systems – the Orion spacecraft, SLS rocket, and the supporting ground systems – and the first in a series of increasingly complex missions at the Moon. Through Artemis missions, NASA will establish a long-term lunar presence for scientific discovery and prepare for human missions to Mars.


NASA will host a post-splashdown news conference is targeted for 3:30 p.m. EST


Participants include:


Bill Nelson, NASA administrator
Jim Free, NASA associate administrator for the Exploration System Development Mission Directorate, NASA Headquarters
Vanessa Wyche, director, Johnson
Janet Petro, director, Kennedy
Mike Sarafin, mission manager, NASA Headquarters
Howard Hu, Orion Program manager, Johnson
Emily Nelson, chief flight director, Johnson
Melissa Jones, recovery director, Kennedy

Artemis I Update: Orion Secured Inside USS Portland Ahead of Return to Shore

Orion-1024x683.jpg

At 12:40 p.m. EST, Dec. 11, 2022, NASA’s Orion spacecraft for the Artemis I mission splashed down in the Pacific Ocean after a 25.5 day mission to the Moon. Orion will be recovered by NASA’s Landing and Recovery team, U.S. Navy and Department of Defense partners aboard the USS Portland. Credit: NASA/James M. Blair


The Orion spacecraft has been secured in the well deck of the USS Portland. The ship will soon begin its trip back to U.S. Naval Base San Diego, where engineers will remove Orion from the ship in preparation for transport back to Kennedy Space Center in Florida for post-flight analysis.


Upon Orion’s successful splashdown in the Pacific Ocean west of Baja California at 9:40 PST/12:40 EST Dec. 11, flight controllers in mission control at NASA’s Johnson Space Center in Houston spent about two hours performing tests in open water to gather additional data about the spacecraft, including on its thermal properties after enduring the searing heat of re-entry through Earth’s atmosphere. Recovery personnel also spent time collecting detailed imagery of the spacecraft before beginning to pull the capsule into the USS Portland’s well deck.


The recovery process involved divers attaching a cable called a winch line and several additional tending lines attached to the crew module. The winch was used to pull Orion into a specially designed cradle inside the ship’s well deck and the other lines were used to control the motion of the spacecraft. The recovery team consists of personnel and assets from the U.S. Department of Defense, including Navy amphibious specialists and Space Force weather specialists, and engineers and technicians from Kennedy Space Center in Florida, Johnson Space Center in Houston, and Lockheed Martin Space Operations.


Orion is expected to arrive to shore Dec. 13 with offload expected on Dec. 15.



 

Users who are viewing this thread

Back
Alto