Scienza & Tecnologia

CRISPR’s ‘ancestry problem’ misses cancer targets in those of African descent
Reference genomes used to direct the gene editor fail to account for human diversity


 
Rare, midsize black hole caught devouring a star
Technique could reveal missing population thought to be key in assembling largest black holes



_20221111_on_mid_sized_black_hole.jpg

In this artist’s conception, a star that strays too close to a supermassive black hole ends its life in a spectacular light show known as a tidal disruption event.NASA/JPL-CalTech
 
Flight Day 10: Orion Enters Distant Retrograde Orbit


Flight Controllers in the White Flight Control Room at NASA’s Johnson Space Center in Houston successfully performed a burn to insert Orion into a distant retrograde orbit by firing the orbital maneuvering system engine for 1 minutes and 28 seconds at 4:52 p.m. CST, propelling the spacecraft at 363 feet per second. Shortly before conducting the burn, Orion was traveling more than 57,00 miles above the lunar surface, marking the farthest distance it will reach from the Moon during the mission. While in lunar orbit, flight controllers will monitor key systems and perform checkouts while in the environment of deep space.


The orbit is distant in that Orion will fly about 40,000 miles above the Moon. Due to the distance of the orbit, it will take Orion nearly a week to complete half an orbit around the Moon, where it will exit the orbit for the return journey home. About four days later, the spacecraft will harness the Moon’s gravitational force once again, combined with a precisely timed lunar flyby burn to slingshot Orion onto its return course to Earth ahead of splashdown in the Pacific Ocean on Sunday, Dec. 11.


On Saturday, Nov. 26, Orion spacecraft will break the record for farthest distance traveled by a spacecraft designed to carry humans to space and safely return them to Earth. This distance is currently held by the Apollo 13 spacecraft at 248,655 miles (400,171 km) from Earth. Orion was specifically designed for missions to carry humans farther into space than ever before.


On Artemis I, engineers are testing several aspects of the Orion spacecraft needed for deep space missions with crew, including its highly capable propulsion system to maintain its course with precision and ensure its crew can get home, communication and navigation systems to maintain contact with the ground and orient the spacecraft, systems and features to handle radiation events, as well as a heat shield that can handle a high-speed reentry from the Moon. Both distance and duration demand that spacecraft must have systems that can reliably operate far from home, be capable of keeping astronauts alive in case of emergencies and still be light enough that a rocket can launch it.


Artemis II will test the systems required for astronauts to live and breathe in deep space. Long duration missions far from Earth drive engineers to design compact systems not only to maximize available space for crew comfort, but also to accommodate the volume needed to carry consumables like enough food and water for the entirety of a mission lasting days or weeks.


Learn more about Orion’s capabilities for deep space missions with crew.
 
Artemis I – Flight Day 11: Orion Surpasses Apollo 13 Record Distance from Earth

art001e000539_large-1024x768.jpg

On flight day 11, NASA’S Orion spacecraft captured imagery looking back at the Earth from a camera mounted on one of its solar arrays. The spacecraft is currently in a distant retrograde orbit around the Moon.


On day 11 of the Artemis I mission, Orion continues its journey beyond the Moon after entering a distant retrograde orbit Friday, Nov. 25, at 3:52 p.m. CST. Orion will remain in this orbit for six days before exiting lunar orbit to put the spacecraft on a trajectory back to Earth and f a Sunday, Dec. 11, splashdown in the Pacific Ocean.


Orion surpassed the distance record for a mission with a spacecraft designed to carry humans to deep space and back to Earth, at 7:42 a.m. Saturday, Nov. 26. The record was set during the Apollo 13 mission at 248,655 miles from our home planet. At its maximum distance from the Moon, Orion will be more than 270,000 miles from Earth Monday, Nov. 28.


Engineers also completed the first orbital maintenance burn by firing auxiliary thrusters on Orion’s service module at 3:52 p.m. for less than a second to propel the spacecraft at .47 feet per second. The planned orbital maintenance burns will fine-tune Orion’s trajectory as it continues its orbit around the Moon.


Flying aboard Orion on the Artemis I mission is a suited manikin named after a key player in bringing Apollo 13 safely back to Earth. Arturo Campos was an electrical engineer who developed a plan to provide the command module with enough electrical power to navigate home safely after an oxygen tank aboard the service module of the Apollo spacecraft ruptured. Commander Moonikin Campos is outfitted with sensors to provide data on what crew members may experience in flight, continuing Campos’ legacy of enabling human exploration in deep space.


Artemis builds on the experience of Apollo. With Artemis, humans will return to the lunar surface, and this time to stay. NASA will use innovate technologies to explore the Moon’s South Pole and more of the lunar surface than ever before using the Gateway space station in lunar orbit along with advanced spacesuits and rovers. NASA will lead the way in collaboration with international and commercial partners to establish the first long-term presence on the Moon. Then, we will use what we learn on and around the Moon to take the next giant leap: sending the first astronauts to Mars.

As of 1:16 p.m., Orion was 252,133 miles from Earth and 52,707 miles from the Moon, cruising at 2,013 miles per hour. You can track Orion via the Artemis Real-Time Orbit Website, or AROW.
Learn more about how Apollo builds on Artemis and how Orion is designed for human missions to deep space.


 
Artemis I – Flight Day 12: Orion Star Trackers, Reaction Control Thrusters Tested

52523078469_e77cf085ed_k-1024x768.jpg

(Nov. 24, 2022) – On flight day 9, NASA’s Orion spacecraft captured imagery looking back at the Moon from a camera mounted on one of its solar arrays. The spacecraft is enroute to a distant retrograde orbit around the Moon.


On the 12th day of the Artemis I mission, team members conducted another planned test of the star trackers aboard Orion as it continued along a distant retrograde orbit of the Moon, and began another reaction control thruster flight test.


Engineers hope to characterize the alignment between the star trackers and the Orion inertial measurements units, both of which are part of the guidance, navigation and control system, by exposing different areas of the spacecraft to the Sun and activating the star trackers in different thermal states. Star trackers are navigation tools that measure the positions of stars to help the spacecraft determine its orientation. The inertial measurement units contain three devices, called gyros, used to measure spacecraft body rotation rates, and three accelerometers used to measure spacecraft accelerations.


Together, the star tracker and inertial measurement unit data are used by Orion’s vehicle management computers to compute spacecraft position, velocity, and attitude. The measurements will help engineers understand how thermal states affect the accuracy of the navigation state, which ultimately affects the amount of propellant needed for spacecraft maneuvers. Read more about Orion’s guidance, navigation, and control system in the Artemis I reference guide.


Engineers began a development flight test objective today that changed the minimum jet firing time for the reaction control thrusters over a period of 24 hours. This test objective is designed to exercise the reaction control system jets in a different configuration to model how thruster jets will be used for the crewed Artemis II mission.


Teams also activated and interacted with the Callisto payload, a technology demonstration from Lockheed Martin in collaboration with Amazon and Cisco. Callisto is located in the Orion cabin and will test voice activated and video technology in the deep space environment.


Monday, Nov. 28, Orion will reach its farthest distance from Earth when it is nearly 270,000 miles from our home planet.


As of 4:30 p.m. CST, Orion was over 264,000 miles from Earth and 45,600 miles from the Moon, cruising at 1,750 miles per hour.


To follow the mission real-time, you can track Orion during its mission around the Moon and back, and check the NASA TV schedule for updates on the next televised events. The latest imagery and videos can be found on the Johnson Space Center Flickr.
 
Artemis I — Flight Day 13: Orion Goes the (Max) Distance

art001e000672-1024x768.jpg

(Nov. 28, 2022) On flight day 13, Orion reached its maximum distance from Earth during the Artemis I mission when it was 268,563 miles away from our home planet. Orion has now traveled farther than any other spacecraft built for humans.


NASA’s uncrewed Orion spacecraft reached the farthest distance from Earth it will travel during the Artemis I mission — 268,563 miles from our home planet — just after 3 p.m. CST. The spacecraft also captured imagery of Earth and the Moon together throughout the day, including of the Moon appearing to eclipse Earth.


Reaching the halfway point of the mission on Flight Day 13 of a 25.5 day mission, the spacecraft remains in healthy condition as it continues its journey in distant retrograde orbit, an approximately six-day leg of its larger mission thousands of miles beyond the Moon.


“Because of the unbelievable can-do spirit, Artemis I has had extraordinary success and has completed a series of history making events,” said NASA Administrator Bill Nelson. “It’s incredible just how smoothly this mission has gone, but this is a test. That’s what we do – we test it and we stress it.”


Engineers had originally planned an orbital maintenance burn today but determined it was not necessary because of Orion’s already precise trajectory in distant retrograde orbit. Based on Orion’s performance, managers are examining adding seven additional test objectives to further characterize the spacecraft’s thermal environment and propulsion system to reduce risk before flying future missions with crew. To date, flight controllers have accomplished or are in the process of completing 37.5% of the test objectives associated with the mission, with many remaining objectives set to be evaluated during entry, descent, splashdown, and recovery.


NASA’s Exploration Ground Systems team and the U.S. Navy are beginning initial operations for recovery of Orion when it splashes down in the Pacific Ocean. The team will deploy Tuesday for training at sea before return to shore to make final preparations ahead of splashdown.


Managers also closed out today a team formed earlier in the mission to investigate readings associated with the spacecraft’s star trackers after determining the hardware is performing as expected and initially suspect readings are a byproduct of the flight environment.


Flight controllers also have completed 9 of 19 translational burns and exercised the three types of engines on Orion – the main engine, auxiliary thrusters, and reaction control system thrusters. Approximately 5,640 pounds of propellants have been used, which is about 150 pounds fewer than prelaunch expected values. More than 2,000 pounds of margin remain available beyond what teams plan to use for the mission, an increase of more than 120 pounds from prelaunch expected values. So far, teams have already sent more than 2,000 files from the spacecraft to Earth.
 

Users who are viewing this thread

Back
Alto